Advertisement

Molecular Medicine

, Volume 14, Issue 1–2, pp 36–44 | Cite as

Neutrophils in Cystic Fibrosis Display a Distinct Gene Expression Pattern

  • Minou Adib-Conquy
  • Thierry Pedron
  • Anne-France Petit-Bertron
  • Olivier Tabary
  • Harriet Corvol
  • Jacky Jacquot
  • Annick Clément
  • Jean-Marc Cavaillon
Research Article

Abstract

We compared gene expression in blood neutrophils (polymorphonuclear leukocytes, or PMNs) collected from healthy subjects with those of cystic fibrosis (CF) patients devoid of bacterial colonization. Macroarray analysis of 1050 genes revealed upregulation of 62 genes and downregulation expression of 27 genes in CF blood PMNs. Among upregulated genes were those coding for vitronectin, some chemokines (particularly CCL17 and CCL18), some interleukin (IL) receptors (IL-3, IL-8, IL-10, IL-12), all three colony-stimulating factors (G-, M-, GM-CSF), numerous genes coding for molecules involved in signal transduction, and a few genes under the control of γ-interferon. In contrast, none of the genes coding for adhesion molecules were modulated. The upregulation of six genes in CF PMNs (coding for thrombospondin-1, G-CSF, CXCL10, CCL17, IKKε, IL-10Ra) was further confirmed by qPCR. In addition, the increased presence of G-CSF, CCL17, and CXCL10 was confirmed by ELISA in supernatants of neutrophils from CF patients. When comparison was performed between blood and airway PMNs of CF patients, there was a limited difference in terms of gene expression. Only the mRNA expression of amphiregulin and tumor necrosis factor (TNF) receptor p55 were significantly higher in airway PMNs. The presence of amphiregulin was confirmed by ELISA in the sputum of CF patients, suggesting for the first time a role of amphiregulin in cystic fibrosis. Altogether, this study clearly demonstrates that blood PMNs from CF patients display a profound modification of gene expression profile associated with the disease, suggesting a state of activation of these cells.

Notes

Acknowledgments

The authors thank Marie-Agnès Dilliès, Plate-Forme 2 — Puces à ADN, for her help in the analysis of the macroarrays. This work was supported by the Association Vaincre la Mucoviscidose and in part by an APEX grant fund from INSERM to Thierry Pedron. The authors have no conflict of interests to declare.

References

  1. 1.
    Painter RG, et al. (2006) CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45:10260–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Elston C, Geddes D. (2007) Inflammation in cystic fibrosis: when and why? Friend or foe? Semin. Respir. Crit. Care Med. 28:286–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Corvol H, et al. (2003) Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 284:L997–1003.CrossRefPubMedGoogle Scholar
  4. 4.
    Taggart C, Coakley RJ, Greally P, Canny G, O’Neill SJ, McElvaney NG. (2000) Increased elastase release by CF neutrophils is mediated by tumor necrosis factor-alpha and interleukin-8. Am. J. Physiol. Lung Cell Mol. Physiol. 278:L33–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Saak A, Schonfeld W, Knoller J, Steinkamp G, von der Hardt H, Konig W. (1990) Generation and metabolism of leukotrienes in granulocytes of patients with cystic fibrosis. Int. Arch. Allergy Appl. Immunol. 93:227–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Koller DY, Urbanek R, Gotz M. (1995) Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am. J. Respir. Crit. Care Med. 152:629–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Witko-Sarsat V, Allen RC, Paulais M, Nguyen AT, Bessou G, Lenoir G, Descamps-Latscha B. (1996) Disturbed myeloperoxidase-dependent activity of neutrophils in cystic fibrosis homozygotes and heterozygotes, and its correction by amiloride. J. Immunol. 157:2728–35.PubMedGoogle Scholar
  8. 8.
    Witko-Sarsat V, Halbwachs-Mecarelli L, Sermet-Gaudelus I, Bessou G, Lenoir G, Allen RC, Descamps-Latscha B. (1999) Priming of blood neutrophils in children with cystic fibrosis: correlation between functional and phenotypic expression of opsonin receptors before and after platelet-activating factor priming. J. Infect. Dis. 179:151–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Lawrence RH, Sorrelli TC. (1992) Decreased polymorphonuclear leucocyte chemotactic response to leukotriene B4 in cystic fibrosis. Clin. Exp. Immunol. 89:321–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Russell KJ, et al. (1998) Neutrophil adhesion molecule surface expression and responsiveness in cystic fibrosis. Am. J. Respir. Crit. Care Med. 157:756–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Saba S, Soong G, Greenberg S, Prince A. (2002) Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am. J. Respir. Cell Mol. Biol. 27:561–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Tabary O, et al. (2006) Adherence of airway neutrophils and inflammatory response is increased in CF airway epithelial cell-neutrophil interactions. Am. J. Physiol. Lung Cell Mol. Physiol. 290:L588–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Rosenstein BJ, Cutting GR. (1998) The diagnosis of cystic fibrosis: a consensus statement. Cystic Fibrosis Foundation Consensus Panel. J. Pediatr. 132:589–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Hafen GM, Ranganathan SC, Robertson CF, Robinson PJ. (2006) Clinical scoring systems in cystic fibrosis. Pediatr. Pulmonol. 41:602–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Reglier H, Arce-Vicioso M, Fay M, Gougerot-Pocidalo MA, Chollet-Martin S. (1998) Lack of IL-10 and IL-13 production by human polymorphonuclear neutrophils. Cytokine 10:192–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Petit-Bertron AF, Pédron T, Groß U, Coppée J-Y, Sansonetti PJ, Cavaillon J-M, Adib-Conquy M. (2005) Adherence modifies the regulation of gene expression induced by interleukin-10. Cytokine 29:1–12.PubMedGoogle Scholar
  17. 17.
    Tien MT, et al. (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176:1228–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Li C, Wong WH. (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U. S. A. 98:31–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Schvartz I, Seger D, Shaltiel S. (1999) Vitronectin. Int. J. Biochem. Cell. Biol. 31:539–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Fessler MB, Malcolm KC, Duncan MW, Worthen GS. (2002) A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J. Biol. Chem. 277:31291–302.CrossRefPubMedGoogle Scholar
  21. 21.
    Kobayashi SD, Voyich JM, Buhl CL, Stahl RM, DeLeo FR. (2002) Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression. Proc. Natl. Acad. Sci. U. S. A. 99:6901–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, DeLeo FR. (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. U. S. A. 100:10948–53.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moser C, et al. (2005) Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. APMIS 113:400–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Raga S, Julia MR, Crespi C, Figuerola J, Martinez N, Mila J, Matamoros N. (2003) Gammadelta T lymphocytes from cystic fibrosis patients and healthy donors are high TNF-alpha and IFN-gamma-producers in response to Pseudomonas aeruginosa. Respir. Res. 4:9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schuster A, Haarmann A, Wahn V. (1995) Cytokines in neutrophil-dominated airway inflammation in patients with cystic fibrosis. Eur. Arch. Otorhinolaryngol. 252(Suppl 1):S59–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Jensen PO, Moser C, Kharazmi A, Presler T, Koch C, Hoiby N. (2006) Increased serum concentration of G-CSF in cystic fibrosis patients with chronic Pseudomonas aeruginosa pneumonia. J. Cyst. Fibros. 5:145–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Eyles JL, Roberts AW, Metcalf D, Wicks IP. (2006) Granulocyte colony-stimulating factor and neutrophils: forgotten mediators of inflammatory disease. Nat. Clin. Pract. Rheumatol. 2:500–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Gosselin EJ, Wardwell K, Rigby WF, Guyre PM. (1993) Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J. Immunol. 151:1482–90.PubMedGoogle Scholar
  29. 29.
    Sullivan GW, Carper HT, Mandell GL. (1993) The effect of three human recombinant hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and interleukin-3) on phagocyte oxidative activity. Blood 81:1863–70.PubMedGoogle Scholar
  30. 30.
    Kawano Y, et al. (1994) Synergy among erythropoietin, interleukin 3, stem cell factor (c-kit ligand) and interferon-gamma on early human hematopoiesis. Stem. Cells 12:514–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Osika E, Cavaillon JM, Chadelat K, Boule M, Fitting C, Tournier G, Clement A. (1999) Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. Eur. Respir. J. 14:339–46.CrossRefPubMedGoogle Scholar
  32. 32.
    Brennan S, Cooper D, Sly PD. (2001) Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin. Thorax 56:62–4.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Petit-Bertron AF, Tabary O, Corvol H, Jacquot J, Clement A, Cavaillon J-M, Adib-Conquy M. Circulating and airway neutrophils in cystic fibrosis display different TLR expression and responsiveness to interleukin-10. Cytokine, In press.Google Scholar
  34. 34.
    Rothwarf DM, Zandi E, Natoli G, Karin M. (1998) IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395:297–300.CrossRefPubMedGoogle Scholar
  35. 35.
    Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U. (2002) Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J. Biol. Chem. 277:37029–36.CrossRefPubMedGoogle Scholar
  36. 36.
    Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu HB. (2004) Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J. Biol. Chem. 279:15652–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Srivastava M, Eidelman O, Joswik C, Paweletz C, Huang W, Zeitlin PL, Pollard HB. (2006) Serum proteomic signature for cystic fibrosis using an antibody microarray platform. Mol. Genet. Metab. 87:303–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Hitchens MR, Robbins PD. (2003) The role of the transcription factor DP in apoptosis. Apoptosis 8:461–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Tsukahara Y, Lian Z, Zhang X, et al. (2003) Gene expression in human neutrophils during activation and priming by bacterial lipopolysaccharide. J. Cell Biochem. 89:848–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. (2003) Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J. Immunol. 170:3357–68.CrossRefPubMedGoogle Scholar
  41. 41.
    Chokki M, Eguchi H, Hamamura I, Mitsuhashi H, Kamimura T. (2005) Human airway trypsin-like protease induces amphiregulin release through a mechanism involving protease-activated receptor-2-mediated ERK activation and TNF alpha-converting enzyme activity in airway epithelial cells. FEBS J. 272:6387–99.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang SW, et al. (2005) Amphiregulin expression in human mast cells and its effect on the primary human lung fibroblasts. J. Allergy Clin. Immunol. 115:287–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Chung E, Cook PW, Parkos CA, Park YK, Pittelkow MR, Coffey RJ. (2005) Amphiregulin causes functional downregulation of adherens junctions in psoriasis. J. Invest. Dermatol. 124:1134–40.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Minou Adib-Conquy
    • 1
  • Thierry Pedron
    • 2
    • 3
  • Anne-France Petit-Bertron
    • 1
  • Olivier Tabary
    • 4
  • Harriet Corvol
    • 4
    • 5
  • Jacky Jacquot
    • 4
  • Annick Clément
    • 4
    • 5
  • Jean-Marc Cavaillon
    • 1
  1. 1.Unit Cytokines & InflammationInstitut PasteurParisFrance
  2. 2.Unité de Pathogénie Microbienne MoléculaireInstitut PasteurParisFrance
  3. 3.INSERM, U786ParisFrance
  4. 4.Faculté de Médecine Saint-AntoineINSERM U 719 and Université Pierre & Marie CurieParisFrance
  5. 5.AP-HP, Service de Pédiatrie-PneumologieHôpital Armand TrousseauParisFrance

Personalised recommendations