Molecular Medicine

, Volume 14, Issue 1–2, pp 55–63 | Cite as

Altered Interleukin-1 Receptor Antagonist and Interleukin-18 mRNA Expression in Myocardial Tissues of Patients with Dilatated Cardiomyopathy

  • Elena Westphal
  • Susanne Rohrbach
  • Michael Buerke
  • Hagen Behr
  • Dorothea Darmer
  • Rolf-Edgar Silber
  • Karl Werdan
  • Harald Loppnow
Research Article


Interleukin-1 (IL-1) is a potent regulator of cell proliferation, inflammation, and contraction of cardiovascular cells. It has been proposed that the IL-1/IL-1ra (IL-1 receptor antagonist) ratio influences these functions. Other members of the IL-1 family and the related caspase-1 also contribute to regulation of IL-1-mediated functions. We determined the mRNA expression of caspase-1, caspase-3, IL-1α, IL-1 β, IL-18, IL-1 receptor type I (IL-1-RI), and IL-1ra in left ventricle tissue of hearts from patients with ischemic or dilated cardiomyopathy (ICM or DCM) and in control tissues from unused donor transplant hearts in RT-PCR experiments. We show that the expression of caspase-1, caspase-3, IL-1β, and IL-1-RI mRNA was not different between patients and control tissues. Furthermore, we did not find detectable amounts of IL-1α mRNA in any of these adult myocardial tissues. On the other hand, expression of IL-18 RNA was lower in myocardium of both patient groups compared with control hearts. Furthermore, IL-1ra mRNA expression was significantly lower in tissues of DCM patients compared with ICM patients and controls. This was in line with a trend towards lower IL-1ra protein levels in myocardial tissues of DCM patients. In contrast with the adult tissues discussed above, which did not express IL-1α mRNA, commercially available human fetal tissue expressed IL-1α mRNA. On the other hand IL-1β mRNA was present in fetal and in adult human heart tissue. Our data provide evidence for an altered ratio of IL-1/IL-1ra in DCM patients. This dysregulation may contribute to pathogenesis and/or progression of heart disease by modulating the otherwise balanced IL-1-mediated functions in cardiovascular cells.



We thank Claudia Pilowski and Beate Heinze for their expert technical assistance. This work was supported by a grant (project 06; Forschungsverbund— Myocard Hypertrophie) of the BMBF to K.W. and H.L. and grant Lo385/4-1 of the DFG to H.L.


  1. 1.
    Hansson GK, Libby P. (2006) The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6:508–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Libby P. (2002) Atherosclerosis: the new view. Sci. Am. 286:46–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Seta Y, Shan K, Bozkurt B, Oral H, Mann DL. (1996) Basic mechanisms in heart failure: the cytokine hypothesis. J. Card. Fail. 2:243–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Dinarello CA, Pomerantz BJ. (2001) Proinflammatory cytokines in heart disease. Blood Purif. 19:314–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Sasayama S, Matsumori A, Kihara Y. (1999) New insights into the pathophysiological role for cytokines in heart failure. Cardiovasc. Res. 42:557–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Werdan K. (1998) The activated immune system in congestive heart failure: from dropsy to the cytokine paradigm. J. Intern. Med. 243:87–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Biasucci LM, Vitelli A, Liuzzo G, et al. (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94:874–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323:236–41.CrossRefGoogle Scholar
  9. 9.
    Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H. (1997) Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn. Circ. J. 61:657–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J. Am. Coll. Cardiol. 27:1201–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Birks EJ, Owen VJ, Burton PB, et al. (2000) TNF-α is expressed in donor heart and predicts right ventricular failure after human heart transplantation. Circulation 102:326–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Doyama K, Fujiwara H, Fukumoto M, et al. (1996) Tumour necrosis factor is expressed in cardiac tissues of patients with heart failure. Int. J. Cardiol. 54:217–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Shioi T, Matsumori A, Kihara Y, et al. (1997) Increased expression of interleukin-1β and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ. Res. 81:664–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Francis SE, Holden H, Holt CM, Duff GW. (1998) Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 30:215–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Ukimura A, Terasaki F, Fujioka S, Deguchi H, Kitaura Y, Isomura T, Suma H. (2003) Quantitative analysis of cytokine mRNA expression in hearts from patients with nonischemic dilated cardiomyopathy (DCM). J. Card. Surg. 18(Suppl 2): S101–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Satoh M, Tamura G, Segawa I, Tashiro A, Hiramori K, Satodate R. (1996) Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Arch. 427:503–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Han RO, Ray PE, Baughman KL, Feldman AM. (1991) Detection of interleukin and interleukinreceptor mRNA in human heart by polymerase chain reaction. Biochem. Biophys. Res. Comm. 181:520–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Galea J, Armstrong J, Gadsdon P, Holden H, Francis SE, Holt CM. (1996) Interleukin-1β in coronary arteries of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 16:1000–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Shioi T, Matsumori A, Sasayama S. (1996) Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 94:2930–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98:149–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Loppnow H, Werdan K, Reuter G, Flad H-D. (1998) The interleukin-1 and interleukin-1-converting enzyme families in the cardiovascular system. Eur. Cytokine Netw. 9:675–80.PubMedGoogle Scholar
  22. 22.
    Long CS. (2001) The role of interleukin-1 in the failing heart. Heart Fail. Rev. 6:81–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Libby P, Warner SJC, Friedman GB. (1988) Interleukin-1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 81:487–98.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Loppnow H, Libby P. (1990) Proliferating or interleukin-1-activated human vascular smooth muscle cells secrete copious interleukin-6. J. Clin. Invest. 85:731–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Loppnow H, Libby P. (1989) Adult human vascular endothelial cells express the IL-6 gene differentially in response to LPS or IL-1. Cell. Immunol. 122:493–503.CrossRefPubMedGoogle Scholar
  26. 26.
    Müller-Werdan U, Schumann H, Loppnow H, et al. (1998) Endotoxin and tumor necrosis factor-α exert a similar proinflammatory effect in neonatal rat cardiomyocytes, but have different cardiodepressant profiles. J. Mol. Cell. Cardiol. 30: 1027–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Kacimi R, Karliner JS, Koudssi F, Long CS. (1998) Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Circ. Res. 82:576–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Hosenpud JD, Campbell SM, Mendelson DJ. (1989) Interleukin-1-induced myocardial depression in an isolated beating heart preparation. J. Heart Transplant. 8:460–4.PubMedGoogle Scholar
  29. 29.
    Evans HG, Lewis MJ, Shah AM. (1993) Interleukin-1β modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc. Res. 27:1486–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Cain BS, Meldrum DR, Dinarello CA, Meng XZ, Joo KS, Banerjee A, Harken AH. (1999) TNF and IL-1 synergistically depress human myocardial function. Crit. Care Med. 27:1309–18.CrossRefPubMedGoogle Scholar
  31. 31.
    Stein B, Frank P, Schmitz W, Scholz H, Thoenes M. (1996) Endotoxin and cytokines induce direct cardiodepressive effects in mammalian cardiomyocytes via induction of nitric oxide synthase. J. Mol. Cell. Cardiol. 28:1631–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE. (1996) Tumor necrosis factor-α and interleukin-1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J. Exp. Med. 183:949–58.CrossRefGoogle Scholar
  33. 33.
    Bick RJ, Liao JP, King TW, LeMaistre A, McMillin JB, Buja LM. (1997) Temporal effects of cytokines on neonatal cardiac myocyte Ca2+ transients and adenylate cyclase activity. Am. J. Physiol. 41: H1937–44.Google Scholar
  34. 34.
    Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. (1999) Cytokine-mediated apoptosis in cardiac myocytes: The role of inducible NO synthase induction and peroxynitrite generation. Circ. Res. 85:829–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. (1999) Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ. Res. 84:21–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Dinarello CA. (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–147.PubMedGoogle Scholar
  37. 37.
    Libby P. (2002) Inflammation in atherosclerosis. Nature 420:868–74.CrossRefGoogle Scholar
  38. 38.
    Hansson GK. (2005) Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Ross R. (1999) Atherosclerosis: an inflammatory disease. N. Engl. J. Med. 340:115–26.CrossRefGoogle Scholar
  40. 40.
    Schmitz J, Owyang A, Oldham E, et al. (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–90.CrossRefGoogle Scholar
  41. 41.
    Horai R, Saijo S, Tanioka H, et al. (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin-1 receptor antagonist-deficient mice. J. Exp. Med. 191:313–20.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nicklin MJH, Hughes DE, Barton JL, Ure JM, Duff GW. (2000) Arterial inflammation in mice lacking the interleukin-1 receptor antagonist gene. J. Exp. Med. 191:303–11.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. (1995) Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease: a novel mechanism of chronic intestinal inflammation. J. Immunol. 154:2434–40.PubMedGoogle Scholar
  44. 44.
    Liu H, Hanawa H, Yoshida T, et al. (2005) Effect of hydrodynamics-based gene delivery of plasmid DNA encoding interleukin-1 receptor antagonist-Ig for treatment of rat autoimmune myocarditis: possible mechanism for lymphocytes and noncardiac cells. Circulation 111:1593–1600.CrossRefPubMedGoogle Scholar
  45. 45.
    Wetzler M, Kurzrock R, Estrov Z, Kantarjian H, Gisslinger H, Underbrink MP, Talpaz M. (1994) Altered levels of interleukin-1β and interleukin-1 receptor antagonist in chronic myelogenous leukemia: clinical and prognostic correlates. Blood 84:3142–7.PubMedGoogle Scholar
  46. 46.
    Chomarat P, Vannier E, Dechanet J, Rissoan MC, Banchereau J, Dinarello CA, Miossec P. (1995) Balance of IL-1 receptor antagonist / IL-1β in rheumatoid synovium and its regulation by IL-4 and IL-10. J. Immunol. 154:1432–9.PubMedGoogle Scholar
  47. 47.
    Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. (2001) Inhibition of caspase-1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1ß. Proc. Natl. Acad. Sci. U S A 98:2871–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Matsukawa A, Fukumoto T, Maeda T, Ohkawara S, Yoshinaga M. (1997) Detection and characterization of IL-1 receptor antagonist in tissues from healthy rabbits: IL-1 receptor antagonist is probably involved in health. Cytokine 9:307–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Chirgwin JM, Pryzbyla AE, Macdonald RJ, Rutter WJ. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Westphal E, Chen L, Pilowski C, et al. (2007) Endotoxin-activated cultured neonatal rat cardiomyocytes express functional surface-associated interleukin 1. J. Endotoxin Res. 13:25–34.CrossRefPubMedGoogle Scholar
  51. 51.
    Narula J, Pandy P, Arbustini E, et al. (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc. Natl. Acad. Sci. U S A 96:8144–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moorjani N, Ahmad M, Catarino P, et al. (2006) Activation of apoptotic caspase cascade during the transition to pressure overload-induced heart failure. J. Am. Coll. Cardiol. 48:1451–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Nishikawa K, Yoshida M, Kusuhara M, Ishigami N, Isoda K, Miyazaki K, Ohsuzu F. (2006) Left ventricular hypertrophy in mice with a cardiac-specific overexpression of interleukin-1. Am. J. Physiol. 291:H176–83.CrossRefGoogle Scholar
  54. 54.
    Herskowitz A, Choi S, Ansari AA, Wesselingh S. (1995) Cytokine mRNA expression in postischemic/reperfused myocardium. Am. J. Pathol. 146:419–28.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Van Hoffen E, Van Wichen D, Stuij I, et al. (1996) In situ expression of cytokines in human heart allografts. Am. J. Pathol. 149:1991–2003.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ziegelhoffer-Mihalovicova B, Briest W, Baba HA, Rassler B, Zimmer HG. (2003) The expression of mRNA of cytokines and of extracellular matrix proteins in triiodothyronine-treated rat hearts. Mol. Cell. Biochem. 247:61–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidtke M, Glück B, Merkle I, Hofmann P, Stelzner A, Gemsa D. (2000) Cytokine profiles in heart, spleen, and thymus during the acute stage of experimental coxsackievirus B3-induced chronic myocarditis. J. Med. Virol. 61:518–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Nakagawa M, Terracio L, Carver W, BirkedalHansen H, Borg TK. (1992) Expression of collagenase and IL-1α in developing rat hearts. Dev. Dyn. 195:87–99.CrossRefPubMedGoogle Scholar
  59. 59.
    Hacham M, Argov S, White RM, Segal S, Apte RN. (2002) Different patterns of interleukin1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur. Cytokine Netw. 13:55–65.PubMedGoogle Scholar
  60. 60.
    Mallat Z, Heymes C, Corbaz A, et al. (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J. 18:1752–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Deyerle KL, Sims JE, Dower SK, Bothwell MA. (1992) Pattern of IL-1 receptor gene expression suggests role in noninflammatory processes. J. Immunol. 149:1657–65.PubMedGoogle Scholar
  62. 62.
    Lim BK, Choe SC, Shin JO, et al. (2002) Local expression of IL-1ra by plasmid DNA improves mortality and decreases myocardial inflammation in experimental coxsackieviral myocarditis. Circulation 105:1278–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Neumann DA, Lane JR, Allen GS, Herskowitz A, Rose NR. (1993) Viral myocarditis leading to cardiomyopathy: do cytokines contribute to pathogenesis? Clin. Immunol. Immunopathol 68:181–90.CrossRefPubMedGoogle Scholar
  64. 64.
    Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH. (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104(12 Suppl 1):I–308–13.Google Scholar
  65. 65.
    Dewberry RM, Holden H, Crossman DC, Francis SE. (2000) Interleukin-1 receptor antagonist expression in human endothelial cells and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20:2394–400.CrossRefPubMedGoogle Scholar
  66. 66.
    Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN, Steinkasserer A, Duff GW. (1993) Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum. Genet. 91:403–4.CrossRefPubMedGoogle Scholar
  67. 67.
    Arend WP, Guthridge CJ. (2000) Biological role of IL-1 receptor antagonist isoforms. Ann. Rheum. Dis. 59(Suppl 1):i60–4.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tountas NA, Casini-Raggi V, Yang H, et al. (1999) Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology 117:806–13.CrossRefPubMedGoogle Scholar
  69. 69.
    Carter MJ, di Giovine FS, Jones S, Mee J, Camp NJ, Lobo AJ, Duff GW. (2001) Association of the interleukin-1 receptor antagonist gene with ulcerative colitis in northern European Caucasians. Gut 48:461–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Manzoli A, Andreotti F, Varlotta C, et al. (1999) Allelic polymorphism of the interleukin-1 receptor antagonist gene in patients with acute or stable presentation of ischemic heart disease. Cardiologia 44:825–30.PubMedGoogle Scholar
  71. 71.
    Francis SE, Camp NJ, Dewberry RM, et al. (1999) Interleukin-1 receptor antagonist gene polymorphism and coronary artery disease. Circulation 99:861–6.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Elena Westphal
    • 1
  • Susanne Rohrbach
    • 2
  • Michael Buerke
    • 1
  • Hagen Behr
    • 1
  • Dorothea Darmer
    • 2
  • Rolf-Edgar Silber
    • 3
  • Karl Werdan
    • 1
  • Harald Loppnow
    • 1
  1. 1.Universitätsklinik und Poliklinik für Innere Medizin III, Forschungslabor (FG6 E01)Martin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.Institut für PathophysiologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.Universitätsklinik und Poliklinik für Herzund ThoraxchirurgieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations