Molecular Medicine

, Volume 13, Issue 7–8, pp 388–395 | Cite as

The +838 C/G MT2A Polymorphism, Metals, and the Inflammatory/Immune Response in Carotid Artery Stenosis in Elderly People

  • Robertina Giacconi
  • Elisa Muti
  • Marco Malavolta
  • Catia Cipriano
  • Laura Costarelli
  • Gianni Bernardini
  • Nazzarena Gasparini
  • Erminia Mariani
  • Vittorio Saba
  • Gianfranco Boccoli
  • Eugenio Mocchegiani


Carotid artery stenosis (CS) is a well-established risk factor for stroke. Increased proinflammatory chemokines, enhanced metallothionein (MT), and altered metal homeostasis may play roles in atherosclerosis progression and plaque destabilization. MT may sequester zinc during chronic inflammation, provoke zinc deficiency, and modulate NK cell cytotoxicity. A recent investigation of older patients with diabetes and atherosclerosis showed an association between the −209 A/G MT2A polymorphism, CS, and zinc status. In this study, we evaluated the relationship between two MT2A polymorphisms (−209 and + 838 locus), metal status, and inflammatory/immune response in older patients with CS only (the CS1 group) or with CS and previous cerebrovascular episodes (transient ischemic attack or stroke) (the CS2 group). A total of 506 individuals (188 CS1, 100 CS2, and 218 healthy controls) were studied. Atherosclerotic patients (CS1 and CS2) showed increased levels of MT, MCP-1, and RANTES, reduced NK cell cytotoxicity, and altered trace element concentrations (zinc, copper, magnesium, iron). The +838 C/G MT2A polymorphism was differently distributed in CS1 and CS2 patients, who displayed the GG genotype (C−) with significantly higher frequency than elderly controls. C− carriers showed increased MCP-1 and decreased NK cell cytotoxicity, CD56+ cells, and intracellular zinc availability along with decreased zinc, copper, and magnesium content in erythrocytes and increased iron in plasma. C− carriers also showed a major incidence of soft carotid plaques. In conclusion, the +838 C/G MT2A polymorphism seems to influence inflammatory markers, zinc availability, NK cell cytotoxicity, and trace element status, all of which may promote CS development.



Supported by the European Commission (ZINCAGE project, n. FOOD-CT-2003-506850; Coordinated by Dr. E. Mocchegiani) and INRCA, Ancona, Italy. Partially supported by grants from Bologna University (RFO fund) and Ricerca Corrente IOR, Bologna, Italy. We thank Professor Stefano Sensi for his very valuable suggestions and criticisms. We acknowledge Dr Marchegiani Francesca for the revision of statistical analysis.


  1. 1.
    Watanabe T, Yasunari K, Nakamura M, Maeda K. (2006) Carotid artery intima-media thickness and reactive oxygen species formation by monocytes in hypertensive patients. J. Hum. Hypertens. 20:336–40.CrossRefGoogle Scholar
  2. 2.
    Radak D, Cvetkovic Z, Tasic N, Petrovic B, Lackovic V, Djordjevic-Denic G. (2004) The content of copper and zinc in human ulcerated carotid plaque. Srp. Arh. Celok. Lek. 132:80–4.CrossRefGoogle Scholar
  3. 3.
    Rostan EF, DeBuys HV, Madey DL, Pinnell SR. (2002) Evidence supporting zinc as an important antioxidant for skin. Int. J. Dermatol. 41:606–11.CrossRefGoogle Scholar
  4. 4.
    Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B. (2000) Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. Am. J. Clin. Nutr. 71:81–7.CrossRefGoogle Scholar
  5. 5.
    Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. (1995) Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur. J. Clin. Nutr. 49:282–288.PubMedGoogle Scholar
  6. 6.
    Reiterer G et al. (2005) Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. J. Nutr. 13:2114–8.CrossRefGoogle Scholar
  7. 7.
    Kurabayashi M. (2005) Role of magnesium in cardiac metabolism Clin. Calcium 15:77–83.PubMedGoogle Scholar
  8. 8.
    Mielcarz G, Howard AN, Mielcarz B, Williams NR, Rajput-Williams J, Nigdigar SV, Stone DL. (2001) Leucocyte copper, a marker of copper body status is low in coronary artery disease. J. Trace Elem. Med. Biol. 15:31–5.CrossRefGoogle Scholar
  9. 9.
    Ueshima K. (2005) Magnesium and ischemic heart disease: a review of epidemiological, experimental, and clinical evidences. Magnes. Res. 18:275–84.PubMedGoogle Scholar
  10. 10.
    Vlad M, Caseanu E, Uza G, Petrescu M. (1994) Concentration of copper, zinc, chromium, iron and nickel in the abdominal aorta of patients deceased with coronary heart disease J. Trace Elem. Electrolytes Health Dis. 8:111–4.PubMedGoogle Scholar
  11. 11.
    Paolisso G, Esposito R, D’Alessio MA, Barbieri M. (1999) Primary and secondary prevention of atherosclerosis: is there a role for antioxidants? Diabetes Metab. 25:298–306.PubMedGoogle Scholar
  12. 12.
    Lee DH, Folsom AR, Jacobs DR Jr. (2005) Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: the Iowa Women’s Health Study. Am. J. Clin. Nutr. 81:787–91.CrossRefGoogle Scholar
  13. 13.
    Palmiter RD. (1998) The elusive function of metallothioneins. Proc. Natl. Acad. Sci. U. S. A. 95:8428–30.CrossRefGoogle Scholar
  14. 14.
    Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Tesei S, Malavolta M. (2006) Nutrientgene interaction in ageing and successful ageing: a single nutrient (zinc) and some target genes related to inflammatory/immune response. Mech. Ageing Dev. 127:517–25.CrossRefGoogle Scholar
  15. 15.
    Giacconi R et al. (2004) The −174G/C polymorphism of IL-6 is useful to screen old subjects at risk for atherosclerosis or to reach successful ageing. Exp. Gerontol. 39:621–8.CrossRefGoogle Scholar
  16. 16.
    Mocchegiani E et al. (2002) MtmRNA gene expression, via IL-6 and glucocorticoids, as potential genetic marker of immunosenescence: lessons from very old mice and humans. Exp. Gerontol. 37:349–57.CrossRefGoogle Scholar
  17. 17.
    Cipriano C et al. (2005) The −308G/Apolymorphism of TNF-alpha influences immunological parameters in old subjects affected by infectious diseases. Int. J. Immunogenet. 32:13–18.CrossRefGoogle Scholar
  18. 18.
    Bruunsgaard H, Pedersen AN, Schroll M, Skinhoj P, Pedersen BK. (2001) Decreased natural killer cell activity is associated with atherosclerosis in elderly humans Exp. Gerontol. 37:127–36.CrossRefGoogle Scholar
  19. 19.
    Jonasson L, Backteman K, Ernerudh J. (2005) Loss of natural killer cell activity in patients with coronary artery disease. Atherosclerosis 183:316–21.CrossRefGoogle Scholar
  20. 20.
    Sheikine Y, Hansson GK. (2004) Chemokines and atherosclerosis. Ann. Med. 36:98–118.CrossRefGoogle Scholar
  21. 21.
    Boisvert WA. (2004) Modulation of atherogenesis by chemokines. Trends Cardiovasc. Med. 14:161–5.CrossRefGoogle Scholar
  22. 22.
    Schober A et al. (2002) Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106:1523–29.CrossRefGoogle Scholar
  23. 23.
    Wang J et al. (2006). Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113:544-54.Google Scholar
  24. 24.
    Wold LE et al. (2006) Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic. Biol. Med. 40:1419–29.CrossRefGoogle Scholar
  25. 25.
    Trendelenburg G et al. (2002) Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia. J. Neurosci. 2002; 22:5879–88.CrossRefGoogle Scholar
  26. 26.
    Giacconi R et al. (2005) Novel -209A/G MT2A polymorphism in old patients with type 2 diabetes and atherosclerosis: relationship with inflammation (IL-6) and zinc. Biogerontology 6:407–13.CrossRefGoogle Scholar
  27. 27.
    Hellings WE, Ackerstaff RG, Pasterkamp G, De Vries JP, Moll FL. (2006) The carotid atherosclerotic plaque and microembolisation during carotid stenting. J. Cardiovasc. Surg. 47:115–26Google Scholar
  28. 28.
    Mariani E, Cattini L, Neri S, Malavolta M, Mocchegiani E, Ravaglia G, Facchini A. (2006) Simultaneous evaluation of circulating chemokine and cytokine profiles in elderly subjects by multiplex technology: relationship with zinc status. Biogerontology 7:449–59.CrossRefGoogle Scholar
  29. 29.
    Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ. (2001) Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J. Am. Chem. Soc. 123:7831–41.CrossRefGoogle Scholar
  30. 30.
    Malavolta M et al. (2006) Single and three-color flow cytometry assay for intracellular zinc ion availability in human lymphocytes with Zinpyr-1 and double immunofluorescence: relationship with metallothioneins. Cytometry A. 69:1043–53.CrossRefGoogle Scholar
  31. 31.
    Yurkow EJ, Makhijani PR. (1998) Flow cytometric determination of metallothionein levels in human peripheral blood lymphocytes: utility in environmental exposure assessment. J. Toxicol. Environ. Health A. 54:445–57.CrossRefGoogle Scholar
  32. 32.
    Giacconi R et al. (2006) CD14 C (−260)T polymorphism, atherosclerosis, elderly: Role of cytokines and metallothioneins. Int. J. Cardiol. Nov. 10 [Epub ahead of print].Google Scholar
  33. 33.
    Giacconi R et al. (2006) Involvement of −308 TNF-alpha and 1267 Hsp70-2 polymorphisms and zinc status in the susceptibility of coronary artery disease (CAD) in old patients. Biogerontology 7: 347–56.CrossRefGoogle Scholar
  34. 34.
    Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. (2004) Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 37:1182–90.CrossRefGoogle Scholar
  35. 35.
    Chen XL, Zhang Q Zhao R, Medford RM. (2004) Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am. J. Physiol Heart Circ Physiol. 286:H1001–7.CrossRefGoogle Scholar
  36. 36.
    Larsson PT, Hallerstam S, Rosfors S, Wallen NH. (2005) Circulating markers of inflammation are related to carotid artery atherosclerosis Int Angiol. 24:43–51.PubMedGoogle Scholar
  37. 37.
    Profumo E et al. (2007) Intracellular expression of cytokines in peripheral blood from patients with atherosclerosis before and after carotid endarterectomy. Atherosclerosis 191(2):340–7.CrossRefGoogle Scholar
  38. 38.
    Lee SD et al. (2006) Pro-inflammatory states and IGF-I level in ischemic heart disease with low or high serum iron. Clin. Chim. Acta. 370:50–6.CrossRefGoogle Scholar
  39. 39.
    Gosling J et al. (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein J. Clin. Invest. 103:773–8.CrossRefGoogle Scholar
  40. 40.
    Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell. 2:275–81.CrossRefGoogle Scholar
  41. 41.
    Kissela B, Air E. (2006) Diabetes: impact on stroke risk and poststroke recovery. Semin. Neurol. 26:100–7.CrossRefGoogle Scholar
  42. 42.
    Egashira K. (2003) Molecular mechanisms mediating inflammation in vascular disease: special reference to monocyte chemoattractant protein-1. Hypertension 41:834–41.CrossRefGoogle Scholar
  43. 43.
    Ohtani K et al. (2004) Antimonocyte chemoattractant protein-1 gene therapy reduces experimental in-stent restenosis in hypercholesterolemic rabbits and monkeys. Gene Ther. 11:1273–82.CrossRefGoogle Scholar
  44. 44.
    Kobusiak-Prokopowicz M, Orzeszko J, Mazur G, Mysiak A, Orda A, Mazurek W. (2005) Kinetics of chemokines in acute myocardial infarction. Kardiol. Pol. 62:301–16.PubMedGoogle Scholar
  45. 45.
    Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Lukl J, Petrek M. (2005) Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction. Mediators Inflamm. 3:175–9.CrossRefGoogle Scholar
  46. 46.
    Martinovic I et al. (2005) Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circ. J. 69:1484–9.CrossRefGoogle Scholar
  47. 47.
    McCabe DJ et al. (2005) Increased platelet count and leucocyte-platelet complex formation in acute symptomatic compared with asymptomatic severe carotid stenosis. J. Neurol. Neurosurg. Psychiatr 76:1249–54.CrossRefGoogle Scholar
  48. 48.
    Turaj W, Slowik A, Dziedzic T, Pulyk R, Adamski M, Strojny J, Szczudlik A. (2006) Increased plasma fibrinogen predicts one-year mortality in patients with acute ischemic stroke. J. Neurol. Sci. 246:13–9.CrossRefGoogle Scholar
  49. 49.
    Cipriano C et al. (2006) Polymorphisms in MT1A gene coding region are associated with longevity in Italian Central female population. Biogerontology 7:357–65.CrossRefGoogle Scholar
  50. 50.
    Hamilton IM, Gilmore WS, Strain JJ. (2000) Marginal copper deficiency and atherosclerosis. Biol. Trace Elem. Res. 78:179–89.CrossRefGoogle Scholar
  51. 51.
    Fujioka Y, Yokoyama M. (2005) Magnesium, cardiovascular risk factors and atherosclerosis. Clin. Calcium 15:221–5.PubMedGoogle Scholar
  52. 52.
    Qayyum R, Schulman P. (2005) Iron and atherosclerosis. Clin. Cardiol. 28:119–22.PubMedGoogle Scholar
  53. 53.
    Amighi J et al. (2004) Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke 35:22–7.CrossRefGoogle Scholar
  54. 54.
    Ravaglia G et al. (2000) Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged ≥ 90 y. Am. J. Clin. Nutr. 711:590–8.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Robertina Giacconi
    • 1
  • Elisa Muti
    • 1
  • Marco Malavolta
    • 1
  • Catia Cipriano
    • 1
  • Laura Costarelli
    • 1
  • Gianni Bernardini
    • 1
  • Nazzarena Gasparini
    • 1
  • Erminia Mariani
    • 2
    • 3
  • Vittorio Saba
    • 4
  • Gianfranco Boccoli
    • 4
  • Eugenio Mocchegiani
    • 1
  1. 1.Immunology Center (Section of Nutrition, Immunity, and Ageing)Research Department INRCAAnconaItaly
  2. 2.Laboratorio di Immunologia e Genetica, Istituto di Ricerca Codivilla PuttiIORBolognaItaly
  3. 3.Dipartimento di Medicina Interna e GastroentrologiaUniversità di BolognaBolognaItaly
  4. 4.Pathology SurgeryINRCA HospitalAnconaItaly

Personalised recommendations