Advertisement

Molecular Medicine

, Volume 13, Issue 7–8, pp 380–387 | Cite as

The Role of Zinc in Cerebral Ischemia

  • Sherri L. Galasso
  • Richard H. Dyck
Proceedings

Abstract

Ischemic stroke is one of the most pervasive life-threatening neurological conditions for which there currently exists limited therapeutic intervention beyond prevention. As calcium-focused neuroprotective strategies have met with limited clinical success, it is imperative that alternative therapeutic targets be considered in the attempt to antagonize ischemic-mediated injury. As such, zinc, which is able to function both as a signaling mediator and neurotoxin, has been implicated in cerebral ischemia. While zinc was first purported to have a role in cerebral ischemia nearly twenty years ago, our understanding of how zinc mediates ischemic injury is still in its relative infancy. Within this review, we examine some of the studies by which zinc has exerted either neuroprotective or neurotoxic effects during global and focal cerebral ischemia.

Notes

Acknowledgments

This work was supported by operating grants from the Natural Sciences and Engineering Research Council of Canada (NSERC; RHD) and the Canadian Institutes of Health Research (RHD), and graduate scholarship from NSERC (SLG).

References

  1. 1.
    Rothwell PM. (2001) The high cost of not funding stroke research: a comparison with heart disease and cancer. Lancet. 357:1612–6.CrossRefGoogle Scholar
  2. 2.
    Caplan LR. (2000) Caplan’s Stroke: A Clinical Approach. Butterworth-Heinemann, Boston, Massachusetts, p. 556.Google Scholar
  3. 3.
    Bambauer KZ, Johnston SC, Bambauer DE, Zivin JA. (2006) Reasons why few patients with acute stroke receive tissue plasminogen activator. Arch. Neurol. 63:661–4.CrossRefGoogle Scholar
  4. 4.
    Lee JM, Zipfel GJ, Choi DW. (1999) The changing landscape of ischaemic brain injury mechanisms. Nature. 399:A7–14.CrossRefGoogle Scholar
  5. 5.
    Sensi SL, Jeng JM. (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr. Mol. Med. 4:87–111.CrossRefGoogle Scholar
  6. 6.
    Frederickson CJ, Koh JY, Bush AI. (2005) The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6:449–62.CrossRefGoogle Scholar
  7. 7.
    Stork CJ, Li YV. (2006) Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J. Neurosci. 26:10430–7.CrossRefGoogle Scholar
  8. 8.
    Martin JL, Stork CJ, Li YV. (2006) Determining zinc with commonly used calcium and zinc fluorescent indicators, a question on calcium signals. Cell Calcium. 40:393–402.CrossRefGoogle Scholar
  9. 9.
    Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 109:247–52.CrossRefGoogle Scholar
  10. 10.
    Johansen FF, Tonder N, Berg M, Zimmer J, Diemer NH. (1993) Hypothermia protects somatostatinergic neurons in rat dentate hilus from zinc accumulation and cell death after cerebral ischemia. Mol. Chem. Neuropathol. 18:161–72.CrossRefGoogle Scholar
  11. 11.
    Koh JY et al. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 272:1013–6.CrossRefGoogle Scholar
  12. 12.
    Tsuda M et al. (1997) Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J. Neurosci. 17:6678–84.CrossRefGoogle Scholar
  13. 13.
    Palmiter RD, Findley SD. (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14:639–49.CrossRefGoogle Scholar
  14. 14.
    Park JA, Lee JY, Sato TA, Koh JY. (2000) Co- induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 20:9096–9103.CrossRefGoogle Scholar
  15. 15.
    Sheline CT, Behrens MM, Choi DW. (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J. Neurosci. 20:3139–46.CrossRefGoogle Scholar
  16. 16.
    Lee JY, Kim YH, Koh JY. (2001) Protection by pyruvate against transient forebrain ischemia in rats. J. Neurosci. 21:RC171.CrossRefGoogle Scholar
  17. 17.
    Lee JM et al. (2002) Zinc translocation accelerates infarction after mild transient focal ischemia. Neuroscience. 115:871–8.CrossRefGoogle Scholar
  18. 18.
    Tsuchiya D et al. (2002) Mild hypothermia reduces zinc translocation, neuronal cell death, and mortality after transient global ischemia in mice. J. Cereb. Blood Flow Metab. 22:1231–8.CrossRefGoogle Scholar
  19. 19.
    Shabanzadeh AP, Shuaib A, Yang T, Salam A, Wang CX. (2004) Effect of zinc in ischemic brain injury in an embolic model of stroke in rats. Neurosci. Lett. 356:69–71.CrossRefGoogle Scholar
  20. 20.
    Bennett MV et al. (1996) The GluR2 hypothesis: Ca(++)-permeable AMPA receptors in delayed neurodegeneration. Cold Spring Harb. Symp. Quant. Biol. 61:373–84.CrossRefGoogle Scholar
  21. 21.
    Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS. (1997) The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci. 20:464–70.CrossRefGoogle Scholar
  22. 22.
    Calderone A et al. (2004) Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J. Neurosci. 24:9903–13.CrossRefGoogle Scholar
  23. 23.
    Calderone A et al. (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci. 23:2112–21.CrossRefGoogle Scholar
  24. 24.
    Yamasaki Y et al. (1992) Possible involvement of interleukin-1 in ischemic brain edema formation. Neurosci. Lett. 142:45–7.CrossRefGoogle Scholar
  25. 25.
    Hatashita S, Hoff JT, Salamat SM. (1988) Ischemic brain edema and the osmotic gradient between blood and brain. J. Cereb. Blood Flow Metab. 8:552–9.CrossRefGoogle Scholar
  26. 26.
    Kadoya C, Domino EF, Yang GY, Stern JD, Betz AL. (1995) Preischemic but not postischemic zinc protoporphyrin treatment reduces infarct size and edema accumulation after temporary focal cerebral ischemia in rats. Stroke. 26:1035–8.CrossRefGoogle Scholar
  27. 27.
    Zhao YJ, Yang GY, Domino EF. (1996) Zinc protoporphyrin, zinc ion, and protoporphyrin reduce focal cerebral ischemia. Stroke. 27:2299–303.CrossRefGoogle Scholar
  28. 28.
    Matsushita K et al. (1996) Effect of systemic zinc administration on delayed neuronal death in the gerbil hippocampus. Brain Res. 743:362–5.CrossRefGoogle Scholar
  29. 29.
    Kirino T. (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239:57–69.CrossRefGoogle Scholar
  30. 30.
    Kitamura Y et al. (2006) Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model. J. Pharmacol. Sci. 100:142–8.CrossRefGoogle Scholar
  31. 31.
    Sorensen JC, Mattsson B, Andreasen A, Johansson BB. (1989) Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res. 812: 265–9.CrossRefGoogle Scholar
  32. 32.
    Danscher G. (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry. 71:1–16.CrossRefGoogle Scholar
  33. 33.
    Subramaniam S, Barber PA, Hoyte L, Buchan AM, Dyck RH. (2003) Pre-synaptic Zinc Dynamics in Permanent and Transient Focal Ischemia. Ann. Neurol. 54:S65.Google Scholar
  34. 34.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 17:497–504.CrossRefGoogle Scholar
  35. 35.
    Yang DY et al. (2004) The determination of brain magnesium and zinc levels by a dual-probe microdialysis and graphite furnace atomic absorption spectrometry. J. Am. Coll. Nutr. 23:552S–5S.CrossRefGoogle Scholar
  36. 36.
    Kitamura Y et al. (2006) In vivo measurement of presynaptic Zn2+ release during forebrain ischemia in rats. Biol. Pharm. Bull. 29:821–3.CrossRefGoogle Scholar
  37. 37.
    Kitamura Y et al. (2006) Release of vesicular Zn2+ in a rat transient middle cerebral artery occlusion model. Brain Res. Bull. 69:622–5.CrossRefGoogle Scholar
  38. 38.
    Frederickson CJ et al. (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198:285–295.CrossRefGoogle Scholar
  39. 39.
    Maret W. (1995) Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem. Int. 27:111–7.CrossRefGoogle Scholar
  40. 40.
    Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD. (1997) Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J. Neurosci. 17:1271–81.CrossRefGoogle Scholar
  41. 41.
    Chen Y, Irie Y, Keung WM, Maret W. (2002) S-nitrosothiols react preferentially with zinc thiolate clusters of metallothionein III through transnitrosation. Biochemistry. 41:8360–7.CrossRefGoogle Scholar
  42. 42.
    Sensi SL, Yin HZ, Weiss JH. (2000) AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur. J. Neurosci. 12: 3813–8.CrossRefGoogle Scholar
  43. 43.
    Sensi SL et al. (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl. Acad. Sci. U. S. A. 100:6157–62.CrossRefGoogle Scholar
  44. 44.
    Sensi SL, Ton-That D, Weiss JH, Rothe A, Gee KR. (2003) A new mitochondrial fluorescent zinc sensor. Cell Calcium. 34:281–4.CrossRefGoogle Scholar
  45. 45.
    Aizenman E et al. (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75: 1878–1888.CrossRefGoogle Scholar
  46. 46.
    Lee JY, Cole TB, Palmiter RD, Koh JY. (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J. Neurosci. 20:RC79.CrossRefGoogle Scholar
  47. 47.
    Frederickson CJ, Cuajungco MP, LaBuda CJ, Suh SW. (2002) Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience. 115:471–4.CrossRefGoogle Scholar
  48. 48.
    Lee JY, Kim JH, Palmiter RD, Koh JY. (2003) Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp. Neurol. 184:337–47.CrossRefGoogle Scholar
  49. 49.
    Bossy-Wetzel E et al. (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron. 41:351–65.CrossRefGoogle Scholar
  50. 50.
    Land PW, Aizenman E. (2005) Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur. J. Neurosci. 21:647–57.CrossRefGoogle Scholar
  51. 51.
    Lavoie N et al. (2006) Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death. J. Physiol. 578:275–89.CrossRefGoogle Scholar
  52. 52.
    Weiss JH, Sensi SL, Koh JY. (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21:395–401.CrossRefGoogle Scholar
  53. 53.
    Frederickson CJ, Bush AI. (2001) Synaptically released zinc: physiological functions and pathological effects. Biometal. 14:353–66.CrossRefGoogle Scholar
  54. 54.
    Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL. (2005) Zinc dyshomeostasis: a key modulator of neuronal injury. J. Alzheimers Dis. 8:93–108.CrossRefGoogle Scholar
  55. 55.
    Rosenberg G, Angel I, Kozak A. (2005) Clinical pharmacology of DP-b99 in healthy volunteers: first administration to humans. Br. J. Clin. Pharmacol. 60:7–16.CrossRefGoogle Scholar
  56. 56.
    Yin HZ, Weiss JH. (1995) Zn(2+) permeates Ca(2+) permeable AMPA/kainate channels and triggers selective neural injury. Neuroreport. 6:2553–6.CrossRefGoogle Scholar
  57. 57.
    Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc. Natl. Acad. Sci. U. S. A. 96:2414–9.CrossRefGoogle Scholar
  58. 58.
    Yin HZ, Sensi SL, Ogoshi F, Weiss JH. (2002) Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons. J. Neurosci. 22:1273–9.CrossRefGoogle Scholar
  59. 59.
    Sensi SL et al. (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17:9554–64.CrossRefGoogle Scholar
  60. 60.
    Ohana E et al. (2004) A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279:4278–84.CrossRefGoogle Scholar
  61. 61.
    Wudarczyk J, Debska G, Lenartowicz E. (1999) Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch. Biochem. Biophys. 363:1–8.CrossRefGoogle Scholar
  62. 62.
    Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH. (2001) Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276:47524–9.CrossRefGoogle Scholar
  63. 63.
    Bonanni L et al. (2006) Zinc-dependent multiconductance channel activity in mitochondria isolated from ischemic brain. J. Neurosci. 26:6851–62.CrossRefGoogle Scholar
  64. 64.
    Aravindakumar CT, Ceulemans J, De Ley M. (1999) Nitric oxide induces Zn2+ release from metallothionein by destroying zinc-sulphur clusters without concomitant formation of S-nitrosothiol. Biochem. J. 344:253–8.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Maret W. (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J. Nutr. 130:1455S–8S.CrossRefGoogle Scholar
  66. 66.
    Yuguchi T et al. (1997) Expression of growth inhibitory factor mRNA after focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 17:745–52.CrossRefGoogle Scholar
  67. 67.
    Yanagitani S et al. (1999) Ischemia induces metallothionein III expression in neurons of rat brain. Life Sci. 64:707–15.CrossRefGoogle Scholar
  68. 68.
    Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY. (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience. 89:175–82.CrossRefGoogle Scholar
  69. 69.
    Noh KM, Kim YH, Koh JY. (1999) Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J. Neurochem. 72:1609–16.CrossRefGoogle Scholar
  70. 70.
    Smart TG, Xie X, Krishek BJ. (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42:393–441.CrossRefGoogle Scholar
  71. 71.
    Vandenberg RJ, Mitrovic AD, Johnston GA. (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol. Pharmacol. 54:189–96.CrossRefGoogle Scholar
  72. 72.
    Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D. (1998) Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J. Physiol. 506:363–76.CrossRefGoogle Scholar
  73. 73.
    Sensi SL, Rockabrand E, Canzoniero LM. (2006) Acidosis enhances toxicity induced by kainate and zinc exposure in aged cultured astrocytes. Biogerontology. 7:367–74.CrossRefGoogle Scholar
  74. 74.
    Xiong ZG, Chu XP, Simon RP. (2007) Acid sensing ion channels — novel therapeutic targets for ischemic brain injury. Front. Biosci. 12: 1376–1386.CrossRefGoogle Scholar
  75. 75.
    Peters S, Koh J, Choi DW. (1987) Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science. 236: 589–593.CrossRefGoogle Scholar
  76. 76.
    Westbrook GL, Mayer ML. (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature. 328:640–3.CrossRefGoogle Scholar
  77. 77.
    Christine CW, Choi DW. (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J. Neurosci. 10:108–16.CrossRefGoogle Scholar
  78. 78.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. (1997) A protongated cation channel involved in acid-sensing. Nature. 386:173–7.CrossRefGoogle Scholar
  79. 79.
    Chu XP et al. (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24:8678–89.CrossRefGoogle Scholar
  80. 80.
    Hey JG, Chu XP, Seeds J, Simon RP, Xiong ZG. (2007) Extracellular zinc protects against acidosis-induced injury of cells expressing Ca2+-permeable Acid-sensing ion channels. Stroke. 38:670–3.CrossRefGoogle Scholar
  81. 81.
    Ganju N, Eastman A. (2003) Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ. 10:652–61.CrossRefGoogle Scholar
  82. 82.
    Perry DK et al. (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem. 272:18530–3.CrossRefGoogle Scholar
  83. 83.
    Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. (2001) The role of zinc in caspase activation and apoptotic cell death. BioMetals. 14:315–30.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CalgaryN.W. CalgaryCanada
  2. 2.Department of Cell Biology and AnatomyUniversity of CalgaryCalgaryCanada
  3. 3.Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations