Advertisement

Molecular Medicine

, Volume 13, Issue 7–8, pp 376–379 | Cite as

Müller Cell Zinc Transporter-3 Labeling Suggests a Role in Outer Retina Zinc Homeostasis

  • Stephen Redenti
  • Richard L. Chappell
Proceedings

Abstract

Labeling for zinc transporter protein-3 (ZnT-3), which can be found localized to glutamatergic vesicles elsewhere in the nervous system, has revealed an unexpectedly high concentration of this transporter protein in the outer limiting membrane region of the murine retina, a region that contains the mitochondria-rich portion of photoreceptor inner segments and is not involved with vesicle release. Having suggested the possibility that Müller cell apical villi forming the outer limiting membrane may be associated with the labeling observed, we used immunohistochemical techniques to look for ZnT-3 labeling of Müller cells isolated from rat and mouse retinas. With DAB labeling, rat Müller cell apical villi, soma, and endfeet exhibited ZnT-3 reactivity. FITC label and confocal analysis revealed that ZnT-3 protein appeared throughout the length of mouse Müller cells. We conclude from these observations that the dense labeling for ZnT-3 in the photoreceptor inner segment region of murine retinal slices is due to labeling of ZnT-3 protein associated with Müller cell apical villi. Based on these findings we suggest that Müller cells utilize ZnT-3 to regulate retinal zinc homeostasis and that this role is important to mitochondrial function in the photoreceptor inner segments.

Notes

Acknowledgments

The authors express their appreciation to Dr. Richard D Palmiter for providing the primary ZnT-3 antibody used in these studies. This study was supported in part by Fight for Sight, NSF grant 0615987, PSC/CUNY grant 68490-0037, and NCRR/NIH RCMI award RR-03037.

References

  1. 1.
    Redenti S, Chappell RL. (2004) Localization of zinc transporter-3 (ZnT-3) in mouse retina. Vision Res. 44:3317–21.CrossRefGoogle Scholar
  2. 2.
    Palmiter RD, Cole TB, Quaife CJ, Findley SD. (1996) ZnT-3, putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. U S A 93:14934–9.CrossRefGoogle Scholar
  3. 3.
    Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. (2004) Overview of mammalian zinc transporters. Cell Mol. Life Sci. 61:49–68.CrossRefGoogle Scholar
  4. 4.
    Wang ZY, Danscher G, Dahlstrom A, Li JY. (2003) Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons. Neuroscience 120:605–16.CrossRefGoogle Scholar
  5. 5.
    Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130:1471S–83S.CrossRefGoogle Scholar
  6. 6.
    Thompson RB, Peterson D, Mahoney W et al. (2002) Fluorescent zinc indicators for neurobiology. J. Neurosci. Methods 118:63–75.CrossRefGoogle Scholar
  7. 7.
    Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD. (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc. Natl. Acad. Sci. U S A 94:12676–81.CrossRefGoogle Scholar
  8. 8.
    Danscher G, Wang Z, Kim YK, Kim SJ, Sun Y, Jo SM. (2003) Immunocytochemical localization of zinc transporter 3 in the ependyma of the mouse spinal cord. Neurosci. Lett. 342:81–4.CrossRefGoogle Scholar
  9. 9.
    Colvin RA. (2002) pH dependence and compartmentalization of zinc transport across the plasma membrane of rat cortical neurons. Am. J. Cell Physiol. 282:C317–29.CrossRefGoogle Scholar
  10. 10.
    Ugarte M, Osborne NN. (1999) The localization of free zinc varies in rat photoreceptors during light and dark adaptation. Exp. Eye Res. 69:459–61.CrossRefGoogle Scholar
  11. 11.
    Koulen P, Kuhn R, Wässle H, Brandstätter JH. (1999) Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. Proc. Natl. Acad. Sci. U S A 96:9909–14.CrossRefGoogle Scholar
  12. 12.
    Harada T, Harada C, Watanabe M et al. (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc. Natl. Acad. Sci. U S A 95:4663–6.CrossRefGoogle Scholar
  13. 13.
    Perkins GA, Ellisman MH, Fox DA. (2003) Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Mol. Vis. 9:60–73.PubMedGoogle Scholar
  14. 14.
    Ye B, Maret W, Valee BL. (2001) Zinc metallothionein imported into liver mitochondria inhibits respiration. Proc. Natl. Acad. Sci. U S A 98:2317–22CrossRefGoogle Scholar
  15. 15.
    Sensi SL, Ton-That D, Weiss JH. (2002) Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol. Dis. 10:100–8.CrossRefGoogle Scholar
  16. 16.
    Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH. (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc. Natl. Acad. Sci. U S A 100:6157–62.CrossRefGoogle Scholar
  17. 17.
    Wu SM, Qiao X, Noebels JL, Yang XL. (1993) Localization and modulatory actions of zinc in vertebrate retina. Vision Res. 33:2611–6.CrossRefGoogle Scholar
  18. 18.
    Qian H, Li L, Chappell RL, Ripps H. (1997) GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. J. Neurophysiol. 78:2402–12.CrossRefGoogle Scholar
  19. 19.
    Han Y, Wu SM. (1999) Modulation of glycine receptors in retinal ganglion cells by zinc. Proc. Natl. Acad. Sci. U S A 96:3234–8.CrossRefGoogle Scholar
  20. 20.
    Qian, H, Malchow P, Chappell RL, Ripps H. (1996) Zinc enhances ionic currents induced in skate Müller (glial) cells by the inhibitory neurotransmitter GABA. Proc. R. Soc. (Lond) B. Biol. Sci. 263:791–6.CrossRefGoogle Scholar
  21. 21.
    Reichenbach A, Robinson SR. (1995) The involvement of Müller cells in the outer retina. In Djamgoz MBA, Archer SN, and Vallerga S, editors. Neurobiology and Clinical Aspects of the Outer Retina. Chapman & Hall, London, pp. 395–416.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  1. 1.PhD Program in Biology, The Graduate CenterCUNYNew YorkUSA
  2. 2.Department of Ophthalmology, Schepens Eye Research InstituteHarvard Medical SchoolBostonUSA
  3. 3.Department of Biological Sciences, Hunter CollegeCUNYNew YorkUSA

Personalised recommendations