Molecular Medicine

, Volume 13, Issue 7–8, pp 337–343 | Cite as

Mechanism and Regulation of Cellular Zinc Transport

  • Israel Sekler
  • Stefano L. Sensi
  • Michal Hershfinkel
  • William F. Silverman


Zinc is an essential cofactor for the activity and folding of up to ten percent of mammalian proteins and can modulate the function of many others. Because of the pleiotropic effects of zinc on every aspect of cell physiology, deficits of cellular zinc content, resulting from zinc deficiency or excessive rise in its cellular concentration, can have catastrophic consequences and are linked to major patho-physiologies including diabetes and stroke. Thus, the concentration of cellular zinc requires establishment of discrete, active cellular gradients. The cellular distribution of zinc into organelles is precisely managed to provide the zinc concentration required by each cell compartment. The complexity of zinc homeostasis is reflected by the surprisingly large variety and number of zinc homeostatic proteins found in virtually every cell compartment. Given their ubiquity and importance, it is surprising that many aspects of the function, regulation, and crosstalk by which zinc transporters operate are poorly understood. In this mini-review, we will focus on the mechanisms and players required for generating physiologically appropriate zinc gradients across the plasma membrane and vesicular compartments. We will also highlight some of the unsolved issues regarding their role in cellular zinc homeostasis.



Thanks to the many members in the zinc community for their invaluable insight and discussions. This work was supported in part by Binational Science Foundation Grant 2001101 (to M. H.), Israel Science Foundation Grant 456/02.1 (to I. S.), German Israel Foundation (GIF, project nr. I-588-99.1/1998 to I.S.), and Israel Science Foundation equipment Grant 456/02.2 (to I. S.).


  1. 1.
    Berg JM, Shi Y. (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–5.CrossRefGoogle Scholar
  2. 2.
    Vallee BL, Falchuk KH. (1993) The biochemical basis of zinc physiology. Physiol-Rev 73: 79–118.CrossRefGoogle Scholar
  3. 3.
    Maret W, Sandstead HH. (2006) Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 20:3–18.CrossRefGoogle Scholar
  4. 4.
    MacDonald RS. (2000) The role of zinc in growth and cell proliferation. J. Nutr. 130:1500S–8S.CrossRefGoogle Scholar
  5. 5.
    Frederickson CJ, Koh JY, Bush AI. (2005) The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6:449–62.CrossRefGoogle Scholar
  6. 6.
    Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL. (2006) Oxidative stress and brain aging: is zinc the link? Biogerontology. 7:307–14.CrossRefGoogle Scholar
  7. 7.
    Sensi SL, Jeng JM. (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr. Mol. Med. 4: 87–111.CrossRefGoogle Scholar
  8. 8.
    Pal S, He K, Aizenman E. (2004) Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pflugers Arch. 448: 296–303.CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Wang H, Li J, et al. (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J. Neurosci. 24:10616–27.CrossRefGoogle Scholar
  10. 10.
    Lee JM, Zipfel GJ, Park KH, He YY, Hsu CY, Choi DW. (2002) Zinc translocation accelerates infarction after mild transient focal ischemia. Neuroscience. 115:871–8.CrossRefGoogle Scholar
  11. 11.
    Choi DW, Koh JY. (1998) Zinc and brain injury. Annu. Rev. Neurosci. 21:347–75.CrossRefGoogle Scholar
  12. 12.
    Cherny RA et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 30:665–76.CrossRefGoogle Scholar
  13. 13.
    Kim BJ et al. (2000) Zinc as a paracrine effector in pancreatic islet cell death. Diabetes. 49:367–72.CrossRefGoogle Scholar
  14. 14.
    Chang I et al. (2004) Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha. J. Immunol. 172:7008–14.CrossRefGoogle Scholar
  15. 15.
    Priel T, Hershfinkel M. (2006) Zinc influx and physiological consequences in the beta-insulinoma cell line, Min6. Biochem. Biophys. Res. Commun. 346:205–12.CrossRefGoogle Scholar
  16. 16.
    Vogt K, Mellor J, Tong G, Nicoll R. (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 26:187–96.CrossRefGoogle Scholar
  17. 17.
    Bozym RA, Thompson RB, Stoddard AK, Fierke CA. (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol. 1:103–11.CrossRefGoogle Scholar
  18. 18.
    Gee KR, Zhou ZL, Qian WJ, Kennedy R. (2002) Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124:776–8.CrossRefGoogle Scholar
  19. 19.
    Dunn MF. (2005) Zinc-ligand interactions modulate assembly and stability of the insulin hexamer — a review. BioMetals. 18:295–303.CrossRefGoogle Scholar
  20. 20.
    Frederickson CJ, Moncrieff DW. (1994) Zinc-containing neurons. Biol. Signals. 3:127–39.CrossRefGoogle Scholar
  21. 21.
    Liuzzi JP, Cousins RJ. (2004) Mammalian zinc transporters. Annu. Rev. Nutr. 24:151–72.CrossRefGoogle Scholar
  22. 22.
    Eide DJ. (2004) The SLC39 family of metal ion transporters. Pflugers Arch. 447:796–800.CrossRefGoogle Scholar
  23. 23.
    Maret W. (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J. Nutr. 133:1460S–2S.CrossRefGoogle Scholar
  24. 24.
    Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O’Halloran TV. (2002) A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). Mol. Biol. 323: 883–97.CrossRefGoogle Scholar
  25. 25.
    Eren E, Kennedy DC, Maroney MJ, Arguello JM, Eren E, Arguello JM. (2006) A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J. Biol. Chem. 281:33881–91.CrossRefGoogle Scholar
  26. 26.
    Eren E, Arguello JM. (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol. 136:3712–23.CrossRefGoogle Scholar
  27. 27.
    Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH, Gilliam TC. (1994) Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum. Mol. Genet. 3:1647–56.CrossRefGoogle Scholar
  28. 28.
    Sensi SL et al. (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J. Neurosci. 17:9554–64.CrossRefGoogle Scholar
  29. 29.
    Ohana E et al. (2004) A sodium zinc exchange mechanism is mediating extrusion of zinc in Mammalian cells. J. Biol. Chem. 279:4278–84.CrossRefGoogle Scholar
  30. 30.
    Cousins RJ, Liuzzi JP, Lichten LA. (2006) Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281:24085–9.CrossRefGoogle Scholar
  31. 31.
    Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK. (2003) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J. Biol. Chem. 278:50142–50.CrossRefGoogle Scholar
  32. 32.
    Langmade SJ, Ravindra R, Daniels PJ, Andrews GK. (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J. Biol. Chem. 275:34803–9.CrossRefGoogle Scholar
  33. 33.
    Devergnas S et al. (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem. Pharmacol. 68:699–709.CrossRefGoogle Scholar
  34. 34.
    MacDiarmid CW, Milanick MA, Eide DJ. (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J. Biol. Chem. 277:39187–194.CrossRefGoogle Scholar
  35. 35.
    Chao Y, Fu D. (2004) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem. 279:12043–50.CrossRefGoogle Scholar
  36. 36.
    Sensi SL, Rockabrand E, Canzoniero LM. (2006) Acidosis enhances toxicity induced by kainate and zinc exposure in aged cultured astrocytes. Biogerontology. 7:367–74.CrossRefGoogle Scholar
  37. 37.
    Palmiter RD. (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc. Natl. Acad. Sci. U. S. A. 101:4918–23.CrossRefGoogle Scholar
  38. 38.
    Nolte C et al. (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia. 48:145–55.CrossRefGoogle Scholar
  39. 39.
    Sekler I et al. (2002) Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J. Comp. Neurol. 447: 201–9.CrossRefGoogle Scholar
  40. 40.
    Nitzan YB, Sekler I, Hershfinkel M, Moran A, Silverman WF. (2002) Postnatal regulation of ZnT-1 expression in the mouse brain. Brain Res. Dev. Brain Res. 137:149–57.CrossRefGoogle Scholar
  41. 41.
    Palmiter RD, Findley SD. (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO-J. 14:639–49.CrossRefGoogle Scholar
  42. 42.
    Ohana E et al. (2006) Silencing of ZnT-1 expression enhances heavy metal influx and toxicity. J. Mol. Med. 84:753–63.CrossRefGoogle Scholar
  43. 43.
    Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I. (2004) A role for ZnT-1 in regulating cellular cation influx. Biochem. Biophys. Res. Commun. 323:1145–50.CrossRefGoogle Scholar
  44. 44.
    Palmiter RD, Cole TB, Quaife CJ, Findley SD. (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. U. S. A. 93: 14934–9.CrossRefGoogle Scholar
  45. 45.
    Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. U. S. A. 96:1716–21.CrossRefGoogle Scholar
  46. 46.
    Cole TB, Martyanova A, Palmiter RD. (2001) Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res. 891:253–65.CrossRefGoogle Scholar
  47. 47.
    Lopantsev V, Wenzel HJ, Cole TB, Palmiter RD, Schwartzkroin PA. (2003) Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice. Neuroscience. 116:237–48.CrossRefGoogle Scholar
  48. 48.
    Lee JY, Kim JH, Palmiter RD, Koh JY. (2003) Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp. Neurol. 184:337–47.CrossRefGoogle Scholar
  49. 49.
    Friedlich AL et al. (2004) Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J. Neurosci. 24:3453–9.CrossRefGoogle Scholar
  50. 50.
    Kodirov SA, Takizawa S, Joseph J, Kandel ER, Shumyatsky GP, Bolshakov VY. (2006) Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc. Natl. Acad. Sci. U. S. A. 103:15218–23.CrossRefGoogle Scholar
  51. 51.
    Izumi Y, Auberson YP, Zorumski CF. (2006) Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J. Neurosci. 26: 7181–8.CrossRefGoogle Scholar
  52. 52.
    Mellor J, Nicoll RA. (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nature Neuroscience. 4:125–6.CrossRefGoogle Scholar
  53. 53.
    Ishihara K et al. (2006) Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281:17743–50.CrossRefGoogle Scholar
  54. 54.
    Suzuki T et al. (2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280:637–43.CrossRefGoogle Scholar
  55. 55.
    Inoue K et al. (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum. Mol. Genet. 11: 1775–84.CrossRefGoogle Scholar
  56. 56.
    Afridi HI, Kazi TG, Kazi GH, Jamali MK, Shar GQ. (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol. Trace Elem. Res. 113:19–34.CrossRefGoogle Scholar
  57. 57.
    Huang L, Kirschke CP, Gitschier J. (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J. Biol. Chem. 277: 26389–95.CrossRefGoogle Scholar
  58. 58.
    Ellis CD, Macdiarmid CW, Eide DJ. (2005) Het-eromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280:28811–8.CrossRefGoogle Scholar
  59. 59.
    Jackson KA, Helston RM, McKay JA, O’Neill E D, Mathers JC, Ford D. (2007) Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J. Biol. Chem. 282:10423–31.CrossRefGoogle Scholar
  60. 60.
    Chimienti F, Devergnas S, Favier A, Seve M. (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 53:2330–7.CrossRefGoogle Scholar
  61. 61.
    Chimienti F et al. (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119:4199–206.CrossRefGoogle Scholar
  62. 62.
    Sladek R et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 445:881–5.CrossRefGoogle Scholar
  63. 63.
    Prohaska JR, Gybina AA. (2004) Intracellular copper transport in mammals. JNutr. 134:1003–6.Google Scholar
  64. 64.
    Salazar G, Craige B, Love R, Kalman D, Faundez V. (2005) Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells. J. Cell Sci. 118:1911–21.CrossRefGoogle Scholar
  65. 65.
    Hara H, Aizenman E. (2004) A molecular technique for detecting the liberation of intracellular zinc in cultured neurons. J. Neurosci. Methods. 137:175–80.CrossRefGoogle Scholar
  66. 66.
    Chang CJ, Nolan EM, Jaworski J, Burdette SC, Sheng M, Lippard SJ. (2004) Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol. 11:203–10.CrossRefGoogle Scholar
  67. 67.
    Burdette SC, Frederickson CJ, Bu W, Lippard SJ. (2003) ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family. J. Am. Chem. Soc. 125: 1778–87.CrossRefGoogle Scholar
  68. 68.
    Crivat G et al. (2006) Fluorescence-based zinc ion sensor for zinc ion release from pancreatic cells. Anal. Chem. 78:5799–804.CrossRefGoogle Scholar
  69. 69.
    Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. (2005) Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc. 127:10197–204.CrossRefGoogle Scholar
  70. 70.
    Qiao W, Mooney M, Bird AJ, Winge DR, Eide DJ. (2006) Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl. Acad. Sci. U. S. A. 103:8674–9.CrossRefGoogle Scholar
  71. 71.
    Andrews GK, Wang H, Dey SK, Palmiter RD. (2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis. 40:74–81.CrossRefGoogle Scholar
  72. 72.
    Falcon-Perez JM, Dell’angelica EC. (2007) Zinc transporter 2 (SLC30A2) can suppress the vesicular zinc defect of adaptor protein 3-depleted fibroblasts by promoting zinc accumulation in lysosomes. Exp. Cell Res. 313:1473–83.CrossRefGoogle Scholar
  73. 73.
    Palmiter RD, Cole TB, Findley SD. (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO-J. 15:1784–91.CrossRefGoogle Scholar
  74. 74.
    Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY. (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 99:7705–10.CrossRefGoogle Scholar
  75. 75.
    Huang L, Gitschier J. (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genet. 17:292–7.CrossRefGoogle Scholar
  76. 76.
    Michalczyk A, Varigos G, Catto-Smith A, Blomeley RC, Ackland ML. (2003) Analysis of zinc transporter, hZnT4 (Slc30A4), gene expression in a mammary gland disorder leading to reduced zinc secretion into milk. Hum. Genet. 113:202–10.CrossRefGoogle Scholar
  77. 77.
    Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G. (1999) Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am. J. Physiol. 277: G1231–9.PubMedGoogle Scholar
  78. 78.
    Lang C et al. (2007) Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 292:L577–84.CrossRefGoogle Scholar
  79. 79.
    Smith JL, Xiong S, Markesbery WR, Lovell MA. (2006) Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer’s disease brain. Neuroscience. 140: 879–88.CrossRefGoogle Scholar
  80. 80.
    Kambe T et al. (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277:19049–55.CrossRefGoogle Scholar
  81. 81.
    Kirschke CP, Huang L. (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus J. Biol. Chem. 278:4096–102.CrossRefGoogle Scholar
  82. 82.
    Wang X et al. (2006) Localization of ZnT7 and zinc ions in mouse retina—immunohistochemistry and selenium autometallography. Brain Res. Bull. 71:91–6.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Israel Sekler
    • 1
  • Stefano L. Sensi
    • 2
  • Michal Hershfinkel
    • 3
  • William F. Silverman
    • 3
  1. 1.Department of Physiology, Faculty of Health Science, and The Zlotowski Center for NeuroscienceBen Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of Neurology, CESI-Center for research on AgingUniversity G. d’AnnunzioChietiItaly
  3. 3.Department of Morphology, Faculty of Health Science, and The Zlotowski Center for NeuroscienceBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations