Advertisement

Molecular Medicine

, Volume 12, Issue 11–12, pp 324–327 | Cite as

Emerging Functions of Extracellular Pyridine Nucleotides

  • Richard A Billington
  • Santina Bruzzone
  • Antonio De Flora
  • Armando A Genazzani
  • Friedrich Koch-Nolte
  • Mathias Ziegler
  • Elena Zocchi
Proceedings

Abstract

In addition to the well-known metabolic functions of NAD and NADP, it is rapidly emerging that these 2 pyridine nucleotides and their derivatives also play important roles in cell signaling. Surprisingly, a number of NAD(P) metabolizing enzymes and NAD(P) targets have been found on the outer surface of the plasma membrane and the presence of NAD has been confirmed in extracellular fluids. These findings have opened the door to a new field of research aimed at elucidating the contribution of extracellular pyridine nucleotides in physiological signaling pathways and pathological conditions.

References

  1. 1.
    Berger F, Ramirez-Hernandez MH, Ziegler M. (2004) The new life of a centenarian: signaling functions of NAD(P). Trends Biochem. Sci. 29:111–8.CrossRefGoogle Scholar
  2. 2.
    Thjötta T, Avery OT. (1921) Studies on bacterial nutrition: II. Growth accessory substances in the cultivation of hemophilic bacilli. J. Exp. Med. 34:97–114.CrossRefGoogle Scholar
  3. 3.
    Lwoff A, Lwoff M. (1937) Studies on codehydrogenases. 1. Nature of growth factor ‘V’. Proc. Roy. Soc., London, series B. 122:352–9.CrossRefGoogle Scholar
  4. 4.
    Zocchi E et al. (1999) Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD transport across cell membranes. Faseb. J. 13:273–83.CrossRefGoogle Scholar
  5. 5.
    O’Reilly T, Niven DF. (2003) Levels of nicotinamide adenine dinucleotide in extracellular body fluids of pigs may be growth-limiting for Actinobacillus pleuropneumoniae and Haemophilus parasuis. Can. J. Vet. Res. 67:229–31.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Seman M, Adriouch S, Scheuplein F et al. (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2 /times/ 7 purinoceptor. Immunity. 19:571–82.CrossRefGoogle Scholar
  7. 7.
    Smyth LM, Bobalova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN. (2004) Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J. Biol. Chem. 279:48893–903.CrossRefGoogle Scholar
  8. 8.
    Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB. J. 15:10–2.CrossRefGoogle Scholar
  9. 9.
    De Flora A, Zocchi E, Guida L, Franco L, Bruzzone S. (2004) Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann. N.Y. Acad. Sci. 1028:176–91.PubMedGoogle Scholar
  10. 10.
    Ziegler M, Niere M. (2004) NAD+ surfaces again. Biochem. J. 382:e5–6.CrossRefGoogle Scholar
  11. 11.
    Aksoy P, White TA, Thompson M, Chini EN. (2006) Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345:1386–92.CrossRefGoogle Scholar
  12. 12.
    Young GS, Choleris E, Lund FE, Kirkland JB. (2006) Decreased cADPR and increased NAD+ in the Cd38-/-mouse. Biochem. Biophys. Res. Commun. 346:188–92.CrossRefGoogle Scholar
  13. 13.
    Koch-Nolte F et al. (2006) ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Ann. Med. 38:188–99.CrossRefGoogle Scholar
  14. 14.
    Aktories K, Just I. (2000) Bacterial Protein Toxins. Springer Verlag, Berlin.CrossRefGoogle Scholar
  15. 15.
    Okazaki IJ, Moss J. (1998) Glycosylphosphatidylinositol-anchored and secretory isoforms of mono-ADP-ribosyltransferases. J. Biol. Chem. 273:23617–20.CrossRefGoogle Scholar
  16. 16.
    Glowacki G et al. (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci. 11:1657–70.CrossRefGoogle Scholar
  17. 17.
    Haag F, Koch-Nolte F, Kuhl M, Lorenzen S, Thiele HG. (1994) Premature stop codons inactivate the RT6 genes of the human and chimpanzee species. J. Mol. Biol. 243:537–46.CrossRefGoogle Scholar
  18. 18.
    Bannas P et al. (2005) Activity and specificity of toxin-related mouse T cell ecto-ADP-ribosyltransferase ART2.2 depends on its association with lipid rafts. Blood. 105:3663–70.CrossRefGoogle Scholar
  19. 19.
    Han MK, Cho YS, Kim YS, Yim CY, Kim UH. (2000) Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J. Biol. Chem. 275:20799–805.CrossRefGoogle Scholar
  20. 20.
    Nemoto E, Yu Y, Dennert G. (1996) Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J. Immunol. 157:3341–9.PubMedGoogle Scholar
  21. 21.
    Krebs C et. al. (2005) CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins. J. Immunol. 174: 3298–305.CrossRefGoogle Scholar
  22. 22.
    Chen J et al. (2006) Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ART2-dependent fashion. J. Immunol. in press.Google Scholar
  23. 23.
    Sano Y et al. (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science. 293:1327–30.CrossRefGoogle Scholar
  24. 24.
    Moreschi I et al. (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J. Biol. Chem. 281:31419–29.CrossRefGoogle Scholar
  25. 25.
    Bruzzone S et al. (2006) Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes. Biochem. J. 393:697–704.CrossRefGoogle Scholar
  26. 26.
    Judkins CP et al. (2006) NADPH-induced contractions of mouse aorta do not involve NADPH oxidase: a role for P2X receptors. J. Pharmacol. Exp. Ther. 317:644–50.CrossRefGoogle Scholar
  27. 27.
    Heidemann AC, Schipke CG, Kettenmann H. (2005) Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ. J. Biol. Chem. 280:35630–40.CrossRefGoogle Scholar
  28. 28.
    Singaravelu K, Deitmer JW. (2006) Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes. Cell Calcium. 39:143–53.CrossRefGoogle Scholar
  29. 29.
    De Flora A, Guida L, Franco L, Zocchi E. (1997) The CD38/Cyclic ADP-ribose system: A topological paradox. E. Int. J. Biochem. Cell Biol. 29:1149–66.CrossRefGoogle Scholar
  30. 30.
    Billington RA et al. (2006) A transport mechanism for NAADP in a rat basophilic cell line. FASEB. J. 20:521–3.30.CrossRefGoogle Scholar
  31. 31.
    Franco L et al. (2001) Paracrine roles of NAD+ and Cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276:21642–8.CrossRefGoogle Scholar
  32. 32.
    Lauwereys M et al. (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO. J. 17:3512–20.CrossRefGoogle Scholar
  33. 33.
    Goodrich SP et al. (2005) Production of calcium-mobilizing metabolites by a novel member of the ADP-ribosyl cyclase family expressed in Schistosoma mansoni. Biochemistry. 44:11082–97.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2006

Authors and Affiliations

  • Richard A Billington
    • 1
  • Santina Bruzzone
    • 2
  • Antonio De Flora
    • 2
  • Armando A Genazzani
    • 1
  • Friedrich Koch-Nolte
    • 3
  • Mathias Ziegler
    • 4
  • Elena Zocchi
    • 2
  1. 1.DiSCAFF and the DFB CentreUniversità del Piemonte OrientaleNovaraItaly
  2. 2.DIMES, Section of Biochemistry, and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
  3. 3.Institute of Immunology, Dept. of Clinical PathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Department of Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations