Molecular Medicine

, Volume 11, Issue 1–12, pp 1–15 | Cite as

The Histone Deacetylase Inhibitor ITF2357 Reduces Production of Pro-Inflammatory Cytokines In Vitro and Systemic Inflammation In Vivo

  • Flavio Leoni
  • Gianluca Fossati
  • Eli C Lewis
  • Jae-Kwon Lee
  • Giulia Porro
  • Paolo Pagani
  • Daniela Modena
  • Maria Lusia Moras
  • Pietro Pozzi
  • Leonid L Reznikov
  • Britta Siegmund
  • Giamila Fantuzzi
  • Charles A Dinarello
  • Paolo Mascagni


We studied inhibition of histone deacetylases (HDACs), which results in the unraveling of chromatin, facilitating increased gene expression. ITF2357, an orally active, synthetic inhibitor of HDACs, was evaluated as an anti-inflammatory agent. In lipopolysaccharide (LPS)-stimulated cultured human peripheral blood mononuclear cells (PBMCs), ITF2357 reduced by 50% the release of tumor necrosis factor-α (TNFα) at 10 to 22 nM, the release of intracellular interleukin (IL-1α at 12 nM, the secretion of IL-1β at 12.5 to 25 nM, and the production of interferon-γ (IFNγ) at 25 nM. There was no reduction in IL-8 in these same cultures. Using the combination of IL-12 plus IL-18, IFNγ and IL-6 production was reduced by 50% at 12.5 to 25 nM, independent of decreased IL-1 or TNFα. There was no evidence of cell death in LPS-stimulated PBMCs at 100 nM ITF2357, using assays for DNA degradation, annexin V, and caspase-3/7. By Northern blotting of PBMCs, there was a 50% to 90% reduction in LPS-induced steady-state levels of TNFα and IFNγ mRNA but no effect on IL-1β or IL-8 levels. Real-time PCR confirmed the reduction in TNFα RNA by ITF2357. Oral administration of 1.0 to 10 mg/kg ITF2357 to mice reduced LPS-induced serum TNFα and IFNγ by more than 50%. Anti-CD3-induced cytokines were not suppressed by ITF2357 in PBMCs either in vitro or in the circulation in mice. In concanavalin-A-induced hepatitis, 1 or 5 mg/kg of oral ITF2357 significantly reduced liver damage. Thus, low, nonapoptotic concentrations of the HDAC inhibitor ITF2357 reduce pro-inflammatory cytokine production in primary cells in vitro and exhibit anti-inflammatory effects in vivo.



These studies were supported by National Institutes of Health Grants Al-15614, HL-68743, and CA-04 6934 (all C.A.D.). B.S. was supported by the Deutsche Forschungsgemeinschaft 749/3–3. The authors thank Soo-Hyun Kim, Tania Azam, and Joseph Senello for assistance and Peter Loidl (University of Innsbruck, Department of Microbiology) for the maize HDAC enzyme assays.


  1. 1.
    Yang X. (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26:1076–86.CrossRefGoogle Scholar
  2. 2.
    Curtin ML. (2002) Current patent status of histone deacetylase inhibitors. Expert Opin. Ther. Patents 12:1375–84.CrossRefGoogle Scholar
  3. 3.
    Marks PA et al. (2001) Histone deacetylases and cancer: causes and therapies. Nature Rev. Cancer 1:194–202.CrossRefGoogle Scholar
  4. 4.
    Richon, VM, Zhou X, Rifkind RA, Marks PA. (2001) Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol. Dis. 27:260–4.CrossRefGoogle Scholar
  5. 5.
    O’Connor OA et al. (2001) Clinical development of the histone deacetylase inhibitor suberoylanalide hydroxamic acid (SAHA) in aggressive non-Hodgkin’s lymphoma (NHL) and Hodgkin’s disease (HD). Blood 98:611a.Google Scholar
  6. 6.
    Piekarz RL et al. (2001) Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98:2865–8.CrossRefGoogle Scholar
  7. 7.
    Finnin MS et al. (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–93.CrossRefGoogle Scholar
  8. 8.
    Leoni F et al. (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Nat. Acad. Sci. U. S. A. 99:2995–3000.CrossRefGoogle Scholar
  9. 9.
    Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS. (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111: 539–52.CrossRefGoogle Scholar
  10. 10.
    Reddy P et al. (2001) Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis. J. Exp. Med. 194: 1433–40.CrossRefGoogle Scholar
  11. 11.
    Chung YL, Lee MY, Wang AJ, Yao LF. (2003) A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8:707–17.CrossRefGoogle Scholar
  12. 12.
    Nishida K et al. (2004) Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50:3365–76.CrossRefGoogle Scholar
  13. 13.
    Reilly CM et al. (2004) Modulation of renal disease in MRL/lpr mice by suberoy-lanilide hydroxamic acid. J. Immunol. 173:4171–8.CrossRefGoogle Scholar
  14. 14.
    Thornberry NA et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–74.CrossRefGoogle Scholar
  15. 15.
    Gu Y et al. (1997) Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275:206–9.CrossRefGoogle Scholar
  16. 16.
    Ghayur T et al. (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619–23.CrossRefGoogle Scholar
  17. 17.
    Schmitz J et al. (2005) A novel interleukin-l-like cytokine (IL-33) that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. In press.Google Scholar
  18. 18.
    Bresnihan B et al. (1998) Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum. 41:2196–204.CrossRefGoogle Scholar
  19. 19.
    Moreland LW et al. (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337:141–7.CrossRefGoogle Scholar
  20. 20.
    Elliott MJ et al. (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumor necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344:1105–10.CrossRefGoogle Scholar
  21. 21.
    Present DH et al. (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med. 340:1398–405.CrossRefGoogle Scholar
  22. 22.
    Leonardi CL et al. (2003) Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med. 349:2014–22.CrossRefGoogle Scholar
  23. 23.
    Zou J et al. (2003) Down-regulation of the nonspecific and antigen-specific T cell cytokine response in ankylosing spondylitis during treatment with infliximab. Arthritis Rheum. 48:780–90.CrossRefGoogle Scholar
  24. 24.
    Paul SM et al. (2005) Functional outcomes of treatment of neonatal onset multisystem inflammatory disease (NOMID) with anakinra. Arthritis Rheum. 52(suppl):S536.Google Scholar
  25. 25.
    Lovell DJ, Bowyer SL, Solinger AM. (2005) Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum. 52:1283–6.CrossRefGoogle Scholar
  26. 26.
    Hawkins PN, Lachmann HJ, Aganna E, McDermott MF. (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 50:607–12.CrossRefGoogle Scholar
  27. 27.
    Canna S et al. (2005) Functional characteristics of children with neonatal onset multisystem inflammatory disease (NOMID). Arthritis Rheum. 52S:S666.Google Scholar
  28. 28.
    Reddy P et al. (2004) Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Nat. Acad. Sci. U. S. A. 101:3921–6.CrossRefGoogle Scholar
  29. 29.
    Koelle D, Brosce G, Lechner T, Lusser A, Loidl P. (1998) Biochemical methods for analysis of histone deacetylases. Methods Enzymol. 15:323–31.CrossRefGoogle Scholar
  30. 30.
    Erroi A, Pagani P, Sironi M, Salmona M. 1996. In vivo exposure to NO2 reduces TNF and IL-6 production by endotoxin-stimulated alveolar macrophages. Am. J. Physiol. 271:L132–8.PubMedGoogle Scholar
  31. 31.
    Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–9.CrossRefGoogle Scholar
  32. 32.
    Werman A et al. (2004) The precursor form of IL-1α is an intracrine proinflammatory activator of transcription. Proc. Nat. Acad. Sci. U. S. A. 101:2434–9.CrossRefGoogle Scholar
  33. 33.
    Tiegs G, Hentschel J, Wendel A. (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest. 90:196–203.CrossRefGoogle Scholar
  34. 34.
    Faggioni R et al. (2000) Leptin-deficient (ob/ob) mice are protected from T cellmediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc. Nat. Acad. Sci. U. S. A. 97:2367–72.CrossRefGoogle Scholar
  35. 35.
    Schindler R et al. (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75:40–7.PubMedGoogle Scholar
  36. 36.
    Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. (2001) Interleukin-18 regulates both Th1 and Th2 responses. Ann. Rev. Immunol. 19:423–74.CrossRefGoogle Scholar
  37. 37.
    Wakabayashi K et al. (2005) Gene expression associated with the decrease in malignant phenotype of human liver cancer cells following stimulation with a histone deacetylase inhibitor. Int. J. Oncol. 26:233–9.Google Scholar
  38. 38.
    Marks PA, Richon VM, Rifkind RA. (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Nat. Cancer Inst. 92:1210–6.CrossRefGoogle Scholar
  39. 39.
    Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201:1479–86.CrossRefGoogle Scholar
  40. 40.
    Agostini L et al. (2004) NALP3 forms an IL-1 β processing inflammasome with increased activity in Muckle-Wells auto-inflammatory disorder. Immunity 20:319–25.CrossRefGoogle Scholar
  41. 41.
    Hoffman HM et al. (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–85.CrossRefGoogle Scholar
  42. 42.
    Drenth JP, Goertz J, Daha MR, van der Meer JW. (1996) Immunoglobulin D enhances the release of tumor necrosis factor-alpha, and interleukin-1 beta as well as interleukin-1 receptor antagonist from human mononuclear cells. Immunology 88:355–62.CrossRefGoogle Scholar
  43. 43.
    de Koning HD et al. (2005) Beneficial response to anakinra and thalidomide in Schnitzler’s syndrome. Ann. Rheum. Dis., 11 Aug (epub ahead of print)Google Scholar
  44. 44.
    Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD. (2000) Identification of a locus on chromosome 1q44 for familial cold urticaria. Am. J. Hum. Genet. 66:1693–8.CrossRefGoogle Scholar
  45. 45.
    Andrei C et al. (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: implications for inflammatory processes. Proc. Nat. Acad. Sci. U. S. A. 101:9745–50.CrossRefGoogle Scholar
  46. 46.
    Solle M et al. (2001) Altered cytokine production in mice lacking P2X(7) receptors. J. Biol. Chem. 276:125–32.CrossRefGoogle Scholar
  47. 47.
    Laliberte RE, Eggler J, Gabel CA. (1999) ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J. Biol. Chem. 274:36944–51.CrossRefGoogle Scholar
  48. 48.
    Bossu P et al. (2003) IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proc. Nat. Acad. Sci. U. S. A. 100:14181–6.CrossRefGoogle Scholar
  49. 49.
    Mishra N, Brown DR, Olorenshaw IM, Kammer GM. (2001) Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc. Nat. Acad. Sci. U. S. A. 98:2628–33.CrossRefGoogle Scholar
  50. 50.
    Yoshimoto T et al. (1998) IL-12 upregulates IL-18 receptor expression on T cells, Th1 cells and B cells: synergism with IL-18 for IFNγ production. J. Immunol. 161: 3400–7.PubMedGoogle Scholar
  51. 51.
    Kim SH et al. (2001) Functional reconstitution and regulation of IL-18 activity by the IL-18R beta chain. J. Immunol. 166:148–54.CrossRefGoogle Scholar
  52. 52.
    Wipke BT, Wang Z, Nagengast W, Reichert DE, Allen PM. (2004) Staging the initiation of autoantibody-induced arthritis: a critical role for immune complexes. J. Immunol. 172:7694–702.CrossRefGoogle Scholar
  53. 53.
    Miao F, Gonzalo IG, Lanting L, Natarajan R. (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279:18091–7.CrossRefGoogle Scholar
  54. 54.
    Chen L, Fischle W, Verdin E, Greene WC. (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293:1653–7.CrossRefGoogle Scholar
  55. 55.
    Kiernan R et al. (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278:2758–66.CrossRefGoogle Scholar
  56. 56.
    Munshi N et al. (1998) Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol. Cell 2:457–67.CrossRefGoogle Scholar
  57. 57.
    Mahlknecht U, Will J, Varin A, Hoelzer D, Herbein G. (2004) Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol. 173:3979–90.CrossRefGoogle Scholar
  58. 58.
    Lee JY, Kim NA, Sanford A, Sullivan KE. (2003) Histone acetylation and chromatin conformation are regulated separately at the TNF-alpha promoter in monocytes and macrophages. J. Leukoc. Biol. 73:862–71.CrossRefGoogle Scholar
  59. 59.
    Wessells J et al. (2004) BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J. Biol. Chem. 279:49995–50003.CrossRefGoogle Scholar
  60. 60.
    Ungerstedt JS et al. (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Nat. Acad. Sci. U. S. A. 102:673–8.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2005

Authors and Affiliations

  • Flavio Leoni
    • 1
  • Gianluca Fossati
    • 1
  • Eli C Lewis
    • 2
  • Jae-Kwon Lee
    • 2
  • Giulia Porro
    • 1
  • Paolo Pagani
    • 1
  • Daniela Modena
    • 1
  • Maria Lusia Moras
    • 1
  • Pietro Pozzi
    • 1
  • Leonid L Reznikov
    • 2
  • Britta Siegmund
    • 2
  • Giamila Fantuzzi
    • 2
  • Charles A Dinarello
    • 2
  • Paolo Mascagni
    • 1
  1. 1.Research CenterItalfarmaco, S. p. A.MilanItaly
  2. 2.University of Colorado Health Sciences CenterDenverUSA

Personalised recommendations