Advertisement

Molecular Medicine

, Volume 11, Issue 1–12, pp 52–58 | Cite as

Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia

  • Chrysoula Belessi
  • Kostas Stamatopoulos
  • Anastasia Hadzidimitriou
  • Katerina Hatzi
  • Tatjana Smilevska
  • Niki Stavroyianni
  • Fotini Marantidou
  • George Paterakis
  • Athanasios Fassas
  • Achilles Anagnostopoulos
  • Nikolaos Laoutaris
Articles

Abstract

Immunoglobulin κ (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 κ- and 103 λ-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In κ-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one k chain cannot be excluded. Twenty-eight κ-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of κ-CLL cases carried biallelic IGK locus rearrangements. In λ-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of λ-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in κ- versus λ-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became λ producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, κ- or λ-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis.

Notes

Acknowledgements

We wish to thank Prof. Marie-Paule Lefranc and Dr. Veronique Giudicelli (Laboratoire d’Immunogenetique Moleculaire, LIGM, Université Montpellier II, UPR CNRS) for their support and generosity to share with us their insight on immunoglobulin gene analysis; Dr. Paolo Ghia, Department of Oncology, Università Vita Salute-San Raffaele, Milano, Italy, and Dr. Fred Davi, Laboratory of Hematology and University Paris 6, Hôpital Pitié-Salpètrière, Paris, France, for many stimulating talks and helpful comments; and Dr. Anton Langerak, Department of Immunology Erasmus MC, University Medical Center Rotterdam, The Netherlands, for critically reading the manuscript.

References

  1. 1.
    Nemazee D. (2000) Receptor selection in B and T lymphocytes. Annu. Rev. Immunol. 18:19–51.CrossRefGoogle Scholar
  2. 2.
    Brauninger A, Goossens T, Rajewsky K, Kuppers R. (2001) Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human. Eur. J. Immunol. 31:3631–7.CrossRefGoogle Scholar
  3. 3.
    Prak EL, Weigert M. (1995) Light chain replacement: a new model for antibody gene rearrangement. J. Exp. Med. 182:541–8.CrossRefGoogle Scholar
  4. 4.
    Retter MW, Nemazee D. (1998) Receptor editing occurs frequently during normal B cell development. J. Exp. Med. 188:1231–8.CrossRefGoogle Scholar
  5. 5.
    Ghia P, Gratwohl A, Signer E, Winkler TH, Melchers F, Rolink AG. (1995) Immature B cells from human and mouse bone marrow can change their surface light chain expression. Eur. J. Immunol. 25:3108–14.CrossRefGoogle Scholar
  6. 6.
    Li Y, Li H, Weigert M. (2002) Autoreactive B cells in the marginal zone that express dual receptors. J. Exp. Med. 195:181–8.CrossRefGoogle Scholar
  7. 7.
    Siminovitch KA, Moore MW, Durdik J, Selsing E. (1987) The human kappa deleting element and the mouse recombining segment share DNA sequence homology. Nucleic Acids Res. 15:2699–705.CrossRefGoogle Scholar
  8. 8.
    Klobeck HG, Zachau HG. (1986) The human CK gene segment and the kappa deleting element are closely linked. Nucleic Acids Res. 14:4591–603.CrossRefGoogle Scholar
  9. 9.
    Durdik J, Moore MW, Selsing E. (1984) Novel kappa light-chain gene rearrangements in mouse lambda light chain producing B lymphocytes. Nature 307:749–52.CrossRefGoogle Scholar
  10. 10.
    Dunda O, Corcos D. (1997) Recombining sequence recombination in normal kappa-chain-expressing B cells. J. Immunol. 159:4362–6.PubMedGoogle Scholar
  11. 11.
    Daitch LE, Moore MW, Persiani DM, Durdik JM, Selsing E. (1992) Transcription and recombination of the murine RS element. J. Immunol. 149:83–40.Google Scholar
  12. 12.
    Muller B, Reth M. (1988) Ordered activation of the Ig lambda locus in Abelson B cell lines. J. Exp. Med. 168:2131–7.CrossRefGoogle Scholar
  13. 13.
    Shimizu T, Iwasato T, Yamagishi H. (1991) Deletions of immunoglobulin C kappa region characterized by the circular excision products in mouse splenocytes. J. Exp. Med. 173:1065–72.CrossRefGoogle Scholar
  14. 14.
    Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. (2003) Predominant autoantibody production by early human B cell precursors. Science. 301:1374–7.CrossRefGoogle Scholar
  15. 15.
    Hardy RR, Wei CJ, Hayakawa K. (2004) Selection during development of VH11+ B cells: a model for natural autoantibody-producing CD5+ B cells. Immunol. Rev. 197:60–74.CrossRefGoogle Scholar
  16. 16.
    Bendelac A, Bonneville M, Kearney J. (2001) Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1:77–86.CrossRefGoogle Scholar
  17. 17.
    Hayakawa K, Asano M, Shinton SA, et al. (1999) Positive selection of natural autoreactive B cells. Science. 285:113–6.CrossRefGoogle Scholar
  18. 18.
    Kruetzmann S, Rosado MM, Weber H, et al. (2003) Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197:939–45.CrossRefGoogle Scholar
  19. 19.
    MacLennan IC, Toellner KM, Cunningham AF, et al. (2003) Extrafollicular antibody responses. Immunol. Rev. 194:8–18.CrossRefGoogle Scholar
  20. 20.
    Pillai S, Cariappa A, Moran ST. (2005) Marginal zone B cells. Annu. Rev. Immunol. 23:161–96.CrossRefGoogle Scholar
  21. 21.
    Kenny JJ, Rezanka LJ, Lustig A, Fischer RT, Yoder J, Marshall S, Longo DL. (2000) Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol. 164:4111–9.CrossRefGoogle Scholar
  22. 22.
    Rassenti LZ, Kipps TJ. (1997) Lack of allelic exclusion in B cell chronic lymphocytic leukemia. J. Exp. Med. 185:1435–45.CrossRefGoogle Scholar
  23. 23.
    Chiorazzi N, Rai KR, Ferrarini M. (2005) Chronic lymphocytic leukemia. N. Engl. J. Med. 352:804–15.CrossRefGoogle Scholar
  24. 24.
    Stamatopoulos K, Belessi C, Hadzidimitriou A, et al. (2005) Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood 106:3575–83.CrossRefGoogle Scholar
  25. 25.
    Widhopf GF, Kipps TJ. (2001) Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells. J. Immunol. 166:95–102.CrossRefGoogle Scholar
  26. 26.
    Tobin G, Thunberg U, Johnson A, et al. (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vλ2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101:4952–7.CrossRefGoogle Scholar
  27. 27.
    Ghiotto F, Fais F, Valetto A, et al. (2004) Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J. Clin. Invest. 113:1008–16.CrossRefGoogle Scholar
  28. 28.
    Widhopf GF, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104:2499–504.CrossRefGoogle Scholar
  29. 29.
    Messmer BT, Albesiano E, Efremov DG, et al. (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J. Exp. Med. 200:519–25.CrossRefGoogle Scholar
  30. 30.
    Tobin G, Thunberg U, Karlsson K, et al. (2004) Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 104:2879–85.CrossRefGoogle Scholar
  31. 31.
    Ghia P, Stamatopoulos K, Belessi C, et al. (2005) Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 105:1678–85.CrossRefGoogle Scholar
  32. 32.
    Broker BM, Klajman A, Youinou P, et al. (1988) Chronic lymphocytic leukemic (CLL) cells secrete multispecific autoantibodies. J. Autoimmun. 1:469–81.CrossRefGoogle Scholar
  33. 33.
    Kipps TJ, Robbins BA, Kuster P, Carson DA. (1988) Autoantibody-associated cross-reactive idiotypes expressed at high frequency in chronic lymphocytic leukemia relative to B-cell lymphomas of follicular center cell origin. Blood 72:422–8.PubMedGoogle Scholar
  34. 34.
    Kipps TJ, Tomhave E, Chen PP, Carson DA. (1988) Autoantibody-associated kappa light chain variable region gene expressed in chronic lymphocytic leukemia with little or no somatic mutation: implications for etiology and immunotherapy. J. Exp. Med. 167:840–52.CrossRefGoogle Scholar
  35. 35.
    Sthoeger ZM, Wakai M, Tse DB, et al. (1989) Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J. Exp. Med. 169:255–68.CrossRefGoogle Scholar
  36. 36.
    Borche L, Lim A, Binet JL, Dighiero G. (1990) Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood 76:562–9.PubMedGoogle Scholar
  37. 37.
    Rassenti LZ, Pratt LF, Chen PP, Carson DA, Kipps TJ. (1991) Autoantibody-encoding kappa L chain genes frequently rearranged in lambda L chain-expressing chronic lymphocytic leukemia. J. Immunol. 147:1060–6.PubMedGoogle Scholar
  38. 38.
    Widhopf GF, Brinson DC, Kipps TJ, Tighe H. (2004) Transgenic expression of a human polyreactive Ig expressed in chronic lymphocytic leukemia generates memory-type B cells that respond to nonspecific immune activation. J. Immunol. 172:2092–9.CrossRefGoogle Scholar
  39. 39.
    Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O’Brien S, Rai KR. (1996) National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 87:4990–7.PubMedGoogle Scholar
  40. 40.
    van der Burg M, Tumkaya T, Boerma M, de Bruin-Versteeg S, Langerak AW, van Dongen JJ. (2001) Ordered recombination of immunoglobulin light chain genes occurs at the IGK locus but seems less strict at the IGL locus. Blood 97:1001–8.CrossRefGoogle Scholar
  41. 41.
    Lefranc MP, Giudicelli V, Kaas Q, et al. (2005) IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 33Database Issue: D593–7.PubMedGoogle Scholar
  42. 42.
    Giudicelli V, Chaume D, Lefranc MP. (2004) IMGT/V-QUEST, an integrated software for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 32:W435–40.CrossRefGoogle Scholar
  43. 43.
    Lampman GW, Furie B, Schwartz RS, Stollar BD, Furie BC. (1989) Amino acid sequence of a platelet-binding human anti-DNA monoclonal autoantibody. Blood 74:262–9.PubMedGoogle Scholar
  44. 44.
    Rioux JD, Zdarsky E, Newkirk MM, Rauch J. (1995) Anti-DNA and anti-platelet specificities of SLE-derived autoantibodies: evidence for CDR2H mutations and CDR3H motifs. Mol. Immunol. 32:683–96.CrossRefGoogle Scholar
  45. 45.
    Portolano S, McLachlan SM, Rapoport B. (1993) High affinity, thyroid-specific human autoantibodies displayed on the surface of filamentous phage use V genes similar to other autoantibodies. J. Immunol. 151:2839–51.PubMedGoogle Scholar
  46. 46.
    Dorner T, Foster SJ, Farner NL, Lipsky PE. (1998) Immunoglobulin kappa chain receptor editing in systemic lupus erythematosus. J. Clin. Invest. 102:688–94.CrossRefGoogle Scholar
  47. 47.
    Foster SJ, Brezinschek HP, Brezinschek RI, Lipsky PE. (1997) Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM+ B cells. J. Clin. Invest. 99:1614–27.CrossRefGoogle Scholar
  48. 48.
    Suzuki N, Harada T, Mihara S, Sakane T. (1996) Characterization of a germline Vk gene encoding cationic anti-DNA antibody and role of receptor editing for development of the autoantibody in patients with systemic lupus erythematosus. J. Clin. Invest. 98:1843–50.CrossRefGoogle Scholar
  49. 49.
    Tiegs SL, Russell DM, Nemazee D. (1993) Receptor editing in self reactive bone marrow B cells. J. Exp. Med. 177:1009–20.CrossRefGoogle Scholar
  50. 50.
    Casellas R, Shih TA, Kleinewietfeld M, et al. (2001) Contribution of receptor editing to the antibody repertoire. Science. 291:1541–4.CrossRefGoogle Scholar
  51. 51.
    Chen C, Prak EL, Weigert M. (1997) Editing disease-associated autoantibodies. Immunity 6:97–105.CrossRefGoogle Scholar
  52. 52.
    Juul L, Hougs L, Andersen V, Svejgaard A, Barington T. (1997) The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity. Clin. Exp. Immunol. 109:194–203.CrossRefGoogle Scholar
  53. 53.
    Radic MZ, Erikson J, Litwin S, Weigert M. (1993) B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 177:1165–73.CrossRefGoogle Scholar
  54. 54.
    Martin D, Huang RQ, LeBien T, Van Ness B. (1991) Induced rearrangement of kappa genes in the BLIN-1 human pre-B cell line correlates with germline J-C kappa and V kappa transcription. J. Exp. Med. 173:639–45.CrossRefGoogle Scholar
  55. 55.
    Goebel P, Janney N, Valenzuela JR, Romanow WJ, Murre C, Feeney AJ. (2001) Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B cell factor in nonlymphoid cells. J. Exp. Med. 194: 645–56.CrossRefGoogle Scholar
  56. 56.
    Zhang Z, Burrows PD, Cooper MD. (2004) The molecular basis and biological significance of VH replacement. Immunol. Rev. 197:231–42.CrossRefGoogle Scholar
  57. 57.
    Chen C, Nagy Z, Prak EL, Weigert M. (1995) Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 3:747–55.CrossRefGoogle Scholar
  58. 58.
    Itoh K, Meffre E, Albesiano E, et al. (2000) Immunoglobulin heavy chain variable region gene replacement as a mechanism for receptor revision in rheumatoid arthritis synovial tissue B lymphocytes. J. Exp. Med. 192:1151–64.CrossRefGoogle Scholar
  59. 59.
    Dorner T, Farner NL, Lipsky PE. (1999) Ig lambda and heavy chain gene usage in early untreated systemic lupus erythematosus suggests intensive B cell stimulation. J. Immunol. 163:1027–36.PubMedGoogle Scholar
  60. 60.
    Diaw L, Siwarski D, DuBois W, Jones G, Huppi K. (2000) Double producers of kappa and lambda define a subset of B cells in mouse plasmacytomas. Mol. Immunol. 37:775–81.CrossRefGoogle Scholar
  61. 61.
    Meffre E, Davis E, Schiff C, et al. (2000) Circulating human B cells that express surrogate light chains and edited receptors. Nat. Immunol. 1:207–13.CrossRefGoogle Scholar
  62. 62.
    Zhang Z, Wu X, Limbaugh BH, Bridges SL Jr. (2001) Expression of recombination-activating genes and terminal deoxynucleotidyl transferase and secondary rearrangement of immunoglobulin κ light chains in rheumatoid arthritis synovial tissue. Arthritis Rheum. 44:2275–84.CrossRefGoogle Scholar
  63. 63.
    Kaschner S, Hansen A, Jacobi A, et al. (2001) Immunoglobulin Vλ light chain gene usage in patients with Sjogren’s syndrome. Arthritis Rheum. 44: 2620–32.CrossRefGoogle Scholar
  64. 64.
    Meffre E, Schaefer A, Wardemann H, Wilson P, Davis E, Nussenzweig MC. (2004) Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J. Exp. Med. 199:145–50.CrossRefGoogle Scholar
  65. 65.
    Stamatopoulos K, Kosmas C, Stavroyianni N, Loukopoulos D. (1996) Evidence for immunoglobulin heavy chain variable region gene replacement in a patient with B cell chronic lymphocytic leukemia. Leukemia 10:1551–6.PubMedGoogle Scholar
  66. 66.
    Lenze D, Greiner A, Knorr C, Anagnostopoulos I, Stein H, Hummel M. (2003) Receptor revision of immunoglobulin heavy chain genes in human MALT lymphomas. Mol. Pathol. 56:249–55.CrossRefGoogle Scholar
  67. 67.
    Goossens T, Brauninger A, Klein U, Kuppers R, Rajewsky K. (2001) Receptor revision plays no major role in shaping the receptor repertoire of human memory B cells after the onset of somatic hypermutation. Eur. J. Immunol. 31:3638–48.CrossRefGoogle Scholar
  68. 68.
    Magari M, Sawatari T, Kawano Y, et al. (2002) Contribution of light chain rearrangement in peripheral B cells to the generation of high affinity antibodies. Eur. J. Immunol. 32:957–66.CrossRefGoogle Scholar
  69. 69.
    Goossens T, Klein U, Kuppers R. (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl. Acad. Sci. U S A 95:2463–8.CrossRefGoogle Scholar
  70. 70.
    Klein U, Goossens T, Fischer M, Kanzler H, Braeuninger A, Rajewsky K, Kuppers R. (1998) Somatic hypermutation in normal and transformed human B cells. Immunol. Rev. 162:261–80.CrossRefGoogle Scholar
  71. 71.
    Kuppers R, Goossens T, Klein U. (1999) The role of somatic hypermutation in the generation of deletions and duplications in human Ig V region genes and chromosomal translocations. Curr. Top. Microbiol. Immunol. 246:193–8.PubMedGoogle Scholar
  72. 72.
    Frischmeyer PA, Dietz HC. (1999) Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8:1893–900.CrossRefGoogle Scholar
  73. 73.
    Iborra FJ, Escargueil AE, Kwek KY, Akoulitchev A, Cook PR. (2004) Molecular cross-talk between the transcription, translation, and nonsense-mediated decay machineries. J. Cell Sci. 117:899–906.CrossRefGoogle Scholar
  74. 74.
    Wang J, Vock VM, Li S, Olivas OR, Wilkinson MF. (2002) A quality control pathway that down-regulates aberrant T-cell receptor (TCR) transcripts by a mechanism requiring UPF2 and translation. J. Biol. Chem. 277:18489–93.CrossRefGoogle Scholar
  75. 75.
    Buhler M, Paillusson A, Muhlemann O. (2004) Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5′-half of the VDJ exon. Nucleic Acids Res. 32:3304–15.CrossRefGoogle Scholar
  76. 76.
    Benito C, Gomis R, Fernandez-Alvarez J, Usac EF, Gallart T. (2003) Transcript expression of two Igλ rearrangements and RAG-1/RAG-2 in a mature human B cell producing IgMλ islet cell autoantibody. J. Clin. Immunol. 23:107–18.CrossRefGoogle Scholar
  77. 77.
    Darlow JM, Farrell AM, Stott DI. (2004) Non-functional immunoglobulin G transcripts in a case of hyper-immunoglobulin M syndrome similar to type 4. Immunology 111:212–22.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2005

Authors and Affiliations

  • Chrysoula Belessi
    • 1
  • Kostas Stamatopoulos
    • 2
  • Anastasia Hadzidimitriou
    • 2
  • Katerina Hatzi
    • 2
  • Tatjana Smilevska
    • 3
  • Niki Stavroyianni
    • 2
  • Fotini Marantidou
    • 1
  • George Paterakis
    • 3
  • Athanasios Fassas
    • 2
  • Achilles Anagnostopoulos
    • 2
  • Nikolaos Laoutaris
    • 1
  1. 1.Hematology DepartmentNikea General HospitalPiraeusGreece
  2. 2.Hematology Department and Hematopoietic Cell Transplantation UnitG. Papanicolaou HospitalThessalonikiGreece
  3. 3.Immunology DepartmentG. Gennimatas HospitalAthensGreece

Personalised recommendations