Molecular Medicine

, Volume 10, Issue 7–12, pp 89–95 | Cite as

Immunoglobulin Heavy- And Light-chain Repertoire in Splenic Marginal Zone Lymphoma

  • Kostas Stamatopoulos
  • Chrysoula Belessi
  • Theodora Papadaki
  • Evangelia Kalagiakou
  • Niki Stavroyianni
  • Vassiliki Douka
  • Stavroula Afendaki
  • Riad Saloum
  • Aikaterini Parasi
  • Dimitra Anagnostou
  • Nikolaos Laoutaris
  • Athanasios Fassas
  • Achilles Anagnostopoulos


The considerable heterogeneity in morphology, immunophenotype, genotype, and clinical behavior of splenic marginal zone lymphoma (SMZL) hinders firm conclusions on the origin and differentiation stage of the neoplastic cells. Immunoglobulin (IG) gene usage and somatic mutation patterns were studied in a series of 43 SMZL cases. Clonal IGHV-D-J rearrangements were amplified in 42/43 cases (4 cases carried double rearrangements). Among IGHV-D-J rearrangements, IGHV3 and IGHV4 subgroup genes were used with the highest frequency. Nineteen IGHV genes were unmutated (>98% homology to the closest germline IGHV gene), whereas 27/46 were mutated. Clonal IGKV-J and IGLV-J gene rearrangements were amplified in 36/43 cases, including 31 IGKV-J (8/31 in lambda light-chain expressing cases) and 12 IGLV-J rearrangements; 9/31 IGKV and 6/12 IGLV sequences were mutated. IGKV-J and IGLV-J rearrangements used 14 IGKV and 9 IGLV different germline genes. Significant evidence for positive selection by classical T-dependent antigen was found in only 5/27 IGHV and 6/15 IGKV+IGLV mutated genes. These results provide evidence for the diverse B-cell subpopulations residing in the SMZ, which could represent physiologic equivalents of distinct SMZL subtypes. Furthermore, they indicate that in SMZL, as in other B cell malignancies, a complementarity imprint of antigen selection might be witnessed either by IGHV, IGKV, or IGLV rearranged sequences.



We are indebted to Prof. Marie-Paule Lefranc and Dr. Veronique Giudicelli (Laboratoire d’Immunogenetique Moleculaire, LIGM, Universite Montpellier II, UPR CNRS) for sharing with us a wealth of insight on immunoglobulin genes and offering valuable help in data analysis. We also wish to thank Prof. Manlio Ferrarini (Istituto Nazionale per la Ricerca sul Cancro and Dipartmento di Oncologia Clinica e Sperimentale, Universita di Genova) and Prof. Nicholas Chiorrazzi (North Shore-Long Island Jewish Research Institute, Manhasset, New York) for helpful discussions and their support and interest in our work.


  1. 1.
    Zandvoort A, Timens W. (2002) The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general 1st-line defense against blood-borne antigens. Clin. Exp. Immunol. 130:4–11.CrossRefGoogle Scholar
  2. 2.
    Lopes-Carvalho T, Kearney JF. (2004) Development and selection of marginal zone B cells. Immunol. Rev. 197:192–205.CrossRefGoogle Scholar
  3. 3.
    Martin F, Kearney JF. (2002) Marginal-zone B cells. Nat. Rev. Immunol. 2: 323–35.CrossRefGoogle Scholar
  4. 4.
    Dunn-Walters DK, Isaacson PG, Spencer J. (1996) Sequence analysis of rearranged IgVH genes from microdissected human Peyer’s patch marginal zone B cells. Immunology 88:618–24.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tierens A, Delabie J, Michiels L, Vandenberghe P, De Wolf-Peeters C. (1999) Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 93:226–34.PubMedGoogle Scholar
  6. 6.
    Dono M et al. (2000) Heterogeneity of tonsillar subepithelial B lymphocytes, the splenic marginal zone equivalents. J. Immunol. 164:5596–604.CrossRefGoogle Scholar
  7. 7.
    Thieblemont C et al. (2003) Splenic marginal-zone lymphoma: a distinct clinical and pathological entity. Lancet Oncol. 4:95–103.CrossRefGoogle Scholar
  8. 8.
    Harris NL et al. (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting-Airlie House, Virginia, November 1997. J. Clin. Oncol. 17: 3835–49.CrossRefGoogle Scholar
  9. 9.
    Zhu D, Oscier DG, Stevenson FK. (1995) Splenic lymphoma with villous lymphocytes involves B cells with extensively mutated Ig heavy chain variable region genes. Blood 85:1603–7.PubMedGoogle Scholar
  10. 10.
    Dunn-Walters DK, Boursier L, Spencer J, Isaacson PG. (1998) Analysis of immunoglobulin genes in splenic marginal zone lymphoma suggests ongoing mutation. Hum. Pathol. 29:585–93.CrossRefGoogle Scholar
  11. 11.
    Algara P et al. (2002) Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 99:1299–304.CrossRefGoogle Scholar
  12. 12.
    Bahler DW, Pindzola JA, Swerdlow SH. (2002) Splenic marginal zone lymphomas appear to originate from different B cell types. Am. J. Pathol. 161:81–8.CrossRefGoogle Scholar
  13. 13.
    Zhu D, Orchard J, Oscier DG, Wright DH, Stevenson FK. (2002) V(H) gene analysis of splenic marginal zone lymphomas reveals diversity in mutational status and initiation of somatic mutation in vivo. Blood 100:2659–61.CrossRefGoogle Scholar
  14. 14.
    Tierens A et al. (2003) Splenic marginal zone lymphoma with villous lymphocytes shows on-going immunoglobulin gene mutations. Am. J. Pathol. 162:681–9.CrossRefGoogle Scholar
  15. 15.
    Mateo MS et al. (2001) Molecular heterogeneity of splenic marginal zone lymphomas: analysis of mutations in the 5’ non-coding region of the bcl-6 gene. Leukemia 15:628–34.CrossRefGoogle Scholar
  16. 16.
    Sole F et al. (2001) Splenic marginal zone B-cell lymphomas: 2 cytogenetic subtypes, 1 with gain of 3q and the other with loss of 7q. Haematologica 86:71–7.PubMedGoogle Scholar
  17. 17.
    Hermine O et al. (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347:89–94.CrossRefGoogle Scholar
  18. 18.
    Vargas-Madrazo E, Lara-Ochoa F, Ramirez-Benites MC, Almagro JC. (1997) Evolution of the structural repertoire of the human V(H) and Vkappa germline genes. Int. Immunol. 9:1801–15.CrossRefGoogle Scholar
  19. 19.
    Sahota SS, Leo R, Hamblin TJ, Stevenson FK. (1997) Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells. Blood. 89:219–26.PubMedGoogle Scholar
  20. 20.
    Stamatopoulos K et al. (1997) Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains. Br. J. Haematol. 96:132–46.CrossRefGoogle Scholar
  21. 21.
    Marks J et al. (1991) By-passing immunization: Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222:581–97.CrossRefGoogle Scholar
  22. 22.
    Brauninger A, Goossens T, Rajewsky K, Kuppers R. (2001) Regulation of immunoglobulin light chain gene rearrangements during early B cell development in the human.Eur. J. Immunol. 31:3631–7.CrossRefGoogle Scholar
  23. 23.
    Lefranc M-P, Lefranc G. (2001) The immunoglobulin FactsBook. Academic Press, London.Google Scholar
  24. 24.
    Lefranc M-P. (2003) IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis, Leukemia 17:260–6.CrossRefGoogle Scholar
  25. 25.
    Lefranc MP. (2001) Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp. Clin. Immunogenet. 18:100–16.CrossRefGoogle Scholar
  26. 26.
    Lefranc MP. (2001) Nomenclature of the human immunoglobulin kappa (IGK) genes. Exp. Clin. Immunogenet. 18:161–74.CrossRefGoogle Scholar
  27. 27.
    Lefranc MP. (2001) Nomenclature of the human immunoglobulin lambda (IGL) genes. Exp. Clin. Immunogenet. 18:242–54.CrossRefGoogle Scholar
  28. 28.
    Lossos IS, Tibshirani R, Narasimhan B, Levy R. (2000) The inference of antigen selection on Ig genes. J. Immunol. 165:5122–6.CrossRefGoogle Scholar
  29. 29.
    Rosner K et al. (2001) Third complementarity-determining region of mutated VH immunoglobulin genes contains shorter V, D, J, P, and N components than nonmutated genes. Immunology 103:179–87.CrossRefGoogle Scholar
  30. 30.
    Brezinschek HP, Foster SJ, Brezinschek RI, Dorner T, Domiati-Saad R, Lipsky PE. (1997) Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/ IgM+B cells. J. Clin. Invest. 99:2488–501.CrossRefGoogle Scholar
  31. 31.
    Ruiz M, Pallares N, Contet V, Barbi V, Lefranc MP. (1999) The human immunoglobulin heavy diversity (IGHD) and joining (IGHJ) segments. Exp. Clin. Immunogenet. 16:173–84.CrossRefGoogle Scholar
  32. 32.
    Corbett SJ, Tomlinson IM, Sonnhammer EL, Buck D, Winter G. (1997) Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270:587–97.CrossRefGoogle Scholar
  33. 33.
    Foster SJ, Brezinschek HP, Brezinschek RI, Lipsky PE. (1997) Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM + B cells. J. Clin. Invest. 99:1614–27.CrossRefGoogle Scholar
  34. 34.
    Ignatovich O, Tomlinson IM, Jones PT, Winter G. (1997) The creation of diversity in the human immunoglobulin V(lambda) repertoire. J. Mol. Biol. 268:69–77.CrossRefGoogle Scholar
  35. 35.
    Ignatovich O, Tomlinson IM, Popov AV, Bruggemann M, Winter G. (1999) Dominance of intrinsic genetic factors in shaping the human immunoglobulin Vlambda repertoire. J. Mol. Biol. 294:457–65.CrossRefGoogle Scholar
  36. 36.
    Vasicek TJ, Leder P. (1990) Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 172:609–20.CrossRefGoogle Scholar
  37. 37.
    Dorner T, Foster SJ, Brezinschek HP, Lipsky PE. (1998) Analysis of the targeting of the hypermutational machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements. Immunol. Rev. 162:161–71.CrossRefGoogle Scholar
  38. 38.
    Belessi C, Stamatopoulos K, Stavroyianni N, Zoi K, Papadaki T, Kosmas C. (2001) Somatic hypermutation targeting to intrinsic hotspots of immunoglobulin genes in follicular lymphoma and multiple myeloma. Leukemia 15:1772–8.CrossRefGoogle Scholar
  39. 39.
    Pommie C, Levadoux S, Sabatier R, Lefranc G, Lefranc MP. (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J. Mol. Recognit. 17:17–32.CrossRefGoogle Scholar
  40. 40.
    Brezinschek HP, Foster SJ, Dorner T, Brezinschek RI, Lipsky PE. (1998) Pairing of variable heavy and variable kappa chains in individual naive and memory B cells. J. Immunol. 160:4762–7.PubMedGoogle Scholar
  41. 41.
    de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM, Winter G. (1999) Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire. J. Mol. Biol. 285:895–901.CrossRefGoogle Scholar
  42. 42.
    Stewart AK, Huang C, Long AA, Stollar BD, Schwartz RS. (1992) VH-gene representation in autoantibodies reflects the normal human B-cell repertoire. Immunol. Rev. 128:101–22.CrossRefGoogle Scholar
  43. 43.
    Rao SP, Riggs JM, Friedman DF, Scully MS, LeBien TW, Silberstein LE. (1999) Biased VH gene usage in early lineage human B cells: evidence for preferential Ig gene rearrangement in the absence of selection. J. Immunol. 163:2732–40.PubMedGoogle Scholar
  44. 44.
    Yu K, Taghva A, Lieber MR. (2002) The cleavage efficiency of the human immunoglobulin heavy chain VH elements by the RAG complex: implications for the immune repertoire. J. Biol. Chem. 277:5040–6.CrossRefGoogle Scholar
  45. 45.
    Chiorazzi N, Ferrarini M. (2003) B-cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21: 841–94.CrossRefGoogle Scholar
  46. 46.
    Tobin G et al. (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101:4952–7.CrossRefGoogle Scholar
  47. 47.
    Ghia P et al. (2004) Geographical patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood First Edition Paper, prepublished online October 5, 2004; DOI 10.1182/blood-2004-07-2606.Google Scholar
  48. 48.
    Damle RN et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–7.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–54.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Forconi F, Sahota SS, Lauria F, Stevenson FK. (2004) Revisiting the definition of somatic mutational status in B-cell tumors: does 98% homology mean that a V(H)-gene is unmutated? Leukemia 18:882–3.CrossRefGoogle Scholar
  51. 51.
    Barbas SM et al. (1995) Human autoantibody recognition of DNA. Proc. Natl. Acad. Sci. U.S.A. 92:2529–33.CrossRefGoogle Scholar
  52. 52.
    Dono M et al. (2003) The human marginal zone B cell. Ann. N.Y. Acad. Sci. 987:117–24.CrossRefGoogle Scholar
  53. 53.
    Pillai S, Cariappa A, Moran ST. (2004) Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunol. Rev. 97: 206–18.CrossRefGoogle Scholar
  54. 54.
    William J, Euler C, Christensen S, Shlomchik MJ. (2002) Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297:2066–70.CrossRefGoogle Scholar
  55. 55.
    Song H, Cerny J. (2003) Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198:1923–35.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2004

Authors and Affiliations

  • Kostas Stamatopoulos
    • 1
  • Chrysoula Belessi
    • 2
  • Theodora Papadaki
    • 3
  • Evangelia Kalagiakou
    • 2
  • Niki Stavroyianni
    • 1
  • Vassiliki Douka
    • 1
  • Stavroula Afendaki
    • 3
  • Riad Saloum
    • 1
  • Aikaterini Parasi
    • 4
  • Dimitra Anagnostou
    • 3
  • Nikolaos Laoutaris
    • 2
  • Athanasios Fassas
    • 1
  • Achilles Anagnostopoulos
    • 1
  1. 1.Hematology DepartmentG. Papanicolaou HospitalAsvestohori, ThessalonikiGreece
  2. 2.Hematology DepartmentNikea General HospitalPiraeusGreece
  3. 3.Hemopathology DepartmentEvagelismos HospitalAthensGreece
  4. 4.Pathology DepartmentNikea General HospitalPiraeusGreece

Personalised recommendations