Advertisement

Molecular Medicine

, Volume 10, Issue 1–6, pp 36–44 | Cite as

Attenuated Hippocampus-Dependent Learning and Memory Decline in Transgenic TgAPPswe Fischer-344 Rats

  • Nelson Ruiz-Opazo
  • Kenneth S. Kosik
  • Lyle V. Lopez
  • Pia Bagamasbad
  • Lorenz R. B. Ponce
  • Victoria L. M. Herrera
Articles

Abstract

Alzheimer’s disease (AD) is characterized by increased β amyloid (Aβ) levels, extracellular Aβ deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Aβ and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Aβ-42 (21%), and Aβ-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Aβ deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Aβ levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Aβ-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.

Notes

Acknowledgments

This work was supported by a grant from the National Institutes of Health, AG16770.

References

  1. 1.
    Price DL, Sisodia SS. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Ann. Rev. Neurosci. 21:479–505.CrossRefGoogle Scholar
  2. 2.
    Seubert P et al. (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–7.CrossRefGoogle Scholar
  3. 3.
    Kamenetz F et al. (2003) APP processing and synaptic function. Neuron 37: 925–37.CrossRefGoogle Scholar
  4. 4.
    Rossor MN, Newman S, Frackowiak RS, Lantos P, Kennedy AM. (1993) Alzheimer’s disease families with amyloid precursor protein mutations. Ann N.Y. Acad. Sci. 695:198–202.CrossRefGoogle Scholar
  5. 5.
    Lannfelt L et al. (1993) Low frequency of the APP670/671 mutation in familial Alzheimer’s disease in Sweden. Neurosci. Lett. 153:85–7.CrossRefGoogle Scholar
  6. 6.
    Axelman K, Basun H, Winblad B, Lannfelt L. (1994) A large Swedish family with Alzheimer’s disease with a codon 670/671 amyloid precursor protein mutation: a clinical and genealogical investigation. Arch. Neurol. 51:1193–7.CrossRefGoogle Scholar
  7. 7.
    Hsiao K et al. (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102.CrossRefGoogle Scholar
  8. 8.
    Corcoran KA, Lu Y, Turner RS, Maren S. (2002) Overexpression of hAPPswe impairs rewarded alternation and contextual fear conditioning in a transgenic mouse model of Alzheimer’s disease. Learn. Mem. 9:243–52.CrossRefGoogle Scholar
  9. 9.
    Lalonde R et al. (2002) Spatial learning, exploration, anxiety, and motor coordination in female APP23 transgenic mice with the Swedish mutation. Brain Res. 956:36–44.CrossRefGoogle Scholar
  10. 10.
    Van Dam D et al. (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur. J. Neurosci. 17:388–96.CrossRefGoogle Scholar
  11. 11.
    deToledo-Morrell L, Geinisman Y, Morrell F. (1988) Age-dependent alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiol. Aging 9:581–90.CrossRefGoogle Scholar
  12. 12.
    Ruiz-Opazo N, Xiang XH, Herrera VLM. (1997) Pressure-overload deinduction of human a2 Na,K-ATPase gene expression in transgenic rats. Hypertension 29: 606–12.CrossRefGoogle Scholar
  13. 13.
    Thor DH, Holloway WR. (1982) Social memory of the male laboratory rat. J. Comp. Physiol. Psychol. 96:1000–6.CrossRefGoogle Scholar
  14. 14.
    Sawyer TF, Hengehold AK, Perez WA. (1984) Chemosensory and hormonal mediation of social memory in male rats. Behav. Neurosci. 98:908–13.CrossRefGoogle Scholar
  15. 15.
    Bunsey M, Eichenbaum H. (1995) Selective damage to the hippocampal region blocks long-term retention of a natural and nonspatial stimulus-stimulus association. Hippocampus 5:546–56.CrossRefGoogle Scholar
  16. 16.
    Galef BG Jr, Kennett DJ, Stein M. (1985) Demonstrator influence on observer diet preference: effects of simple exposure and the presence of a demonstrator. Anim. Learn. Behav. 13:25–30.CrossRefGoogle Scholar
  17. 17.
    Galef BG Jr, Stein M. (1985) Demonstrator influence on observer diet preference: analyses of critical social interactions and olfactory signals. Anim. Learn. Behav. 13:31–8.CrossRefGoogle Scholar
  18. 18.
    Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS. (1994) Secreted β-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 91:7104–8.CrossRefGoogle Scholar
  19. 19.
    Johnson-Wood K et al. (1997) Amyloid precursor protein processing and Abeta 42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 94:1550–5.CrossRefGoogle Scholar
  20. 20.
    Duff K et al. (1996) Increased amyloid-β42-43 in brains of mice expressing mutant presenillin 1. Nature 383:710–3.CrossRefGoogle Scholar
  21. 21.
    Galef BG Jr. (1985) Socially-induced diet preference can partially reverse a LiCl-induced diet aversion. Anim. Learn. Behav. 13:415–8.CrossRefGoogle Scholar
  22. 22.
    Galef BG Jr, Mason JR, Preti G, Bean NJ. (1988) Carbon disulfide: a semichemical mediating socially-induced diet choice in rats. Physiol. Behav. 42: 119–24.CrossRefGoogle Scholar
  23. 23.
    Morris RGM. (1981) Spatial localization does not require the presence of local cues. Learn. Motivat. 12:239–60.CrossRefGoogle Scholar
  24. 24.
    Morris RGM, Garrud P, Rawlins JNP, O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–3.CrossRefGoogle Scholar
  25. 25.
    Morris RGM. (1984) Development of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11:47–60.CrossRefGoogle Scholar
  26. 26.
    Paylor R, Baskal L, Wehner JM. (1993) Behavioral dissociations between C57BL/6 and DBA/2 mice on learning and memory tasks: a hippocampal-dysfunction hypothesis. Psychobiology 21:11–26.Google Scholar
  27. 27.
    Brennan PA. (2001) The vomeronasal system. Cell. Mol. Life Sci. 58:546–55.CrossRefGoogle Scholar
  28. 28.
    Bannerman DM, Lemaire M, Beggs S, Rawlins JNP, Iversen SD. (2001) Cytotoxic lesions of the hippocampus increase social investigation but do not impair social-recognition memory. Exp. Brain Res. 138:100–9.CrossRefGoogle Scholar
  29. 29.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–9.CrossRefGoogle Scholar
  30. 30.
    Samuel W, Terry RD, DeTeresa R, Butters N, Masliah E. (1994) Clinical correlates of cortical and nucleus basalis pathology in Alzheimer’s dementia. Arch. Neurol. 51:772–8.CrossRefGoogle Scholar
  31. 31.
    Tamaoka A et al. (1995) Amyloid β protein 1-42/43 (Aβ1-42/43) in cerebellar diffuse plaques: enzyme-linked immunosorbent assay and immunocytochemical study. Brain Res. 679:151–6.CrossRefGoogle Scholar
  32. 32.
    Lue LF et al. (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155:853–62.CrossRefGoogle Scholar
  33. 33.
    McLean CA et al. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46:860–6.CrossRefGoogle Scholar
  34. 34.
    Koistinaho M et al. (2001) Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. U.S.A. 98: 14675–80.CrossRefGoogle Scholar
  35. 35.
    Dodart JC et al. (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nature Neurosci. 5:452–7.CrossRefGoogle Scholar
  36. 36.
    Walsh DM et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–9.CrossRefGoogle Scholar
  37. 37.
    Westerman MA et al. (2002) The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 22:1858–67.CrossRefGoogle Scholar
  38. 38.
    Anderson JJ et al. (1999) Reduced cerebrospinal fluid levels of α-secretase-cleaved amyloid precursor protein in aged rats: correlation with spatial memory deficits. Neuroscience 93:1409–20.CrossRefGoogle Scholar
  39. 39.
    Storey E, Cappai R. (1999) The amyloid precursor protein of Alzheimer’s disease and the A-beta peptide. Neuropathol. Appl. Neurobiol. 25:81–97.CrossRefGoogle Scholar
  40. 40.
    Bondolfi L et al. (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J. Neurosci. 22:515–22.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2004

Authors and Affiliations

  • Nelson Ruiz-Opazo
    • 1
  • Kenneth S. Kosik
    • 2
  • Lyle V. Lopez
    • 1
  • Pia Bagamasbad
    • 1
  • Lorenz R. B. Ponce
    • 1
  • Victoria L. M. Herrera
    • 1
  1. 1.Whitaker Cardiovascular Institute, W609, Section of Molecular Medicine, Department of MedicineBoston University School of MedicineBostonUSA
  2. 2.Center for Neurologic Diseases, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations