Skip to main content
Log in

Analytico- Chemical Evidence for Differentiation of Amino Acid Enantiomers in Aqueous Solutions of Physiological Salinity

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The enantiomeric isomers of organic compounds usually appear in the racemic form in synthetic reactions of the laboratory. However, each of the isomers must somehow be differentiated from the others in biosynthetic reactions, such as of proteins. This differentiation is possible in a bio-reaction because of a salt concentration of about 0.1 mol/ 1 NaCl and the presence of oxygen in the aqueous media of the reaction. Under these conditions, a magnetic field will differentiate the enantiomeric isomers. Experimental evidence shows that the above concentration is unique because it produces a kind of border for water structures. Also, amino acids interact differently with water due to differing hydrophilic properties. Finally, a salt solution of this concentration, together with oxygen, allows differentiation of the enantiomeric isomers of amino acids under a magnetic field. The results of this investigation suggest that the condition of the solution produces circumstances where each of the solute entities can be free from inter-solute interactions. This circumstance locates each solute entity in a fractional part of the solution which is equal to the quotient of the total volume of the solution divided by the total number of the solute ions. In this situation, all solutes are assumed to not interact, and accordingly, the characteristics of the solute can be distinguished. This fractional part of the solution has been termed the “molecular space”. To determine what would happen when the enantiomeric isomers of amino acids were placed in a molecular space, nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) measurements were taken in aqueous sodium chloride solutions (about 0.1 mol/1 NaCl) which held the enantiomeric isomers of amino acids. The results showed that the D-isomers form association with oxygen under magnetic field and the L-ones not. This suggests that the D-isomers are retained in the solution by complex formation with oxygen and only the L-ones can participate to the biosynthesis under the earth’s magnetic field. The presence of oxygen and a magnetic field applied to the isomers are the factors which allow the differentiation between the l- and the D-isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shimoyama, K. Harada and K. Yanai, Chem. Lett., 1985, 83.

    Google Scholar 

  2. A. Shimoyama and K. Harada, Viva Origino, 13, 13 (1985).

    Google Scholar 

  3. S. Fujiwara and Y. Nishimoto, Anal. Sci., 6, 771 (1990).

    Article  CAS  Google Scholar 

  4. S. Fujiwara and Y. Nishimoto, Anal Sci., 7, 683 (1991).

    Article  CAS  Google Scholar 

  5. S. Fujiwara and Y. Nishimoto, Anal. Sci., 6, 907 (1990).

    Article  CAS  Google Scholar 

  6. S. Fujiwara and Y. Nishimoto, Anal. Sci., 7, 687 (1991).

    Article  CAS  Google Scholar 

  7. V. B. Parker, Natl. Std. Ref. Data Ser., 2 (1965).

  8. S. Fujiwara, Geochem. J., 13, 225 (1979).

    Article  CAS  Google Scholar 

  9. S. Fujiwara, Anal. Sci., 4, 123 (1979).

    Article  Google Scholar 

  10. J. P. Limutrakul, S. Fujiwara and B. M. Rode, Anal. Sci., 1, 29 (1985).

    Article  Google Scholar 

  11. S. Fujiwara and Y. Nishimoto, Proc. Japan Academy, 59B, 333 (1985).

    Google Scholar 

  12. S. Fujiwara, Y. Nishimoto and F. Arakawa, Anal. Sci., 1, 23 (1987).

    Article  Google Scholar 

  13. S. Fujiwara, F. Arakawa and O. Toi, Anal. Sci., 3, 213 (1987).

    Article  CAS  Google Scholar 

  14. S. Fujiwara and S. Hayashi, J. Chem. Phys., 43, 23 (1965).

    Article  CAS  Google Scholar 

  15. S. Fujiwara, K. Nagashima, H. Morita and Y. Kanaoka, Bull. Chem. Soc. Jpn., 50, 2851 (1977).

    Article  CAS  Google Scholar 

  16. S. Fujiwara, S. Katsumataand T. Seki, J. Phys. Chem., 71, 115 (1967).

    Article  CAS  Google Scholar 

  17. T. Watanabe, T. Yahagi and S. Fujiwara, J. Am. Chem. Soc, 102, 5187 (1980).

    Article  CAS  Google Scholar 

  18. N. Murase, K. Gonda and T. Watanabe, J. Phys. Chem., 102, 5187 (1980).

    Google Scholar 

  19. N. Murase and T. Watanabe, Mag. Res. Med, 9, 1 (1989).

    Article  CAS  Google Scholar 

  20. M. Takeda and O. Jardetzky, J. Chem. Phys., 26, 1345 (1989).

    Google Scholar 

  21. S. Fujiwara, Y. Arata and H. Momoi, Bull. Chem. Soc. Jpn., 35, 1658 (1962).

    Article  CAS  Google Scholar 

  22. S. Mizushima, Y. Morino and K. Higashi, Sci. Pap. Inst. Phys. Chem. Res., 25, 159 (1934).

    CAS  Google Scholar 

  23. S. Fujiwara and Y. Arata, Bull. Chem. Soc. Jpn., 36, 578 (1963).

    Article  CAS  Google Scholar 

  24. S. Fujiwara and Y. Arata, Bull. Chem. Soc. Jpn., 37, 344 (1964).

    Article  CAS  Google Scholar 

  25. H. Ogura, Y. Arata and S. Fujiwara, J. Mol. Spec, 23, 76 (1967).

    Article  CAS  Google Scholar 

  26. H. Ishizuka, T. Yamamoto, Y. Arata and S. Fujiwara, Bull. Chem. Soc. Jpn., 45, 468 (1973).

    Article  Google Scholar 

  27. T. Fukuroi, Y. Fujiwara, S. Fujiwara and K. Fujii, Anal Chem., 40, 879 (1968).

    Article  CAS  Google Scholar 

  28. Gmelins Handbuch der Anorganischen Chemie”, 8 Auf. System Nr. 221, S. 332 (1928).

  29. S. Fujiwara and Y. Nishimoto, Anal. Sci., in press.

  30. S. Fujiwara and Y. Nishimoto, Anal. Sci., in press.

  31. F. Franks ed., “Water”, Vol. 1, p. 172, Plenum Press, New York, 1972.

  32. W. Chazin, J. Kordel, E. Thulin, T. Hofmann, T. Grackenberg and S. Forsen, Biochemistry, 28, 8646 (1989).

    Article  CAS  Google Scholar 

  33. E. R. Stadtman, J. Gerontology, 43, B112 (1988).

    Article  CAS  Google Scholar 

  34. R. Shapira, G. E. Austin and S. S. Mirra, J. Neurochem., 50, 69 (1988).

    Article  CAS  Google Scholar 

  35. R. Shapira, K. D. Wilkinson and G. Shapira, J. Neurochem., 50, 649 (1988).

    Article  CAS  Google Scholar 

  36. N. Fujii, S. Muraoka and K. Harada, Biochem. Biophys. Acta, 999, 239 (1989).

    CAS  PubMed  Google Scholar 

  37. For example, F. Franks ed., “Water”, Vol. 1, p. 117, Plenum Press, New York, 1972 and Vol. 7, p. 69, dy1983.

  38. S. Fujiwara, H. Haraguchi and Y. Umezawa, Anal. Chem., 40, 249 (1968).

    Article  CAS  Google Scholar 

  39. S. Fujiwara, Y. Umezawa and T. Kugo, Anal Chem., 40, 186 (1968).

    Article  Google Scholar 

  40. The surface of the biomernbrane has been referred to as a cell of thickness of 0.5–5 nm (A. Ehrenberg, Proceeding of seminor, IVA meddelande 187, Stockholm 1976, p. 134). The said cell may correspond to the molecular space cited in this article.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, S. Analytico- Chemical Evidence for Differentiation of Amino Acid Enantiomers in Aqueous Solutions of Physiological Salinity. ANAL. SCI. 8, 589–597 (1992). https://doi.org/10.2116/analsci.8.589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.8.589

Keywords

Navigation