Skip to main content
Log in

Beginning of Atomization in Presence of Matrix Modifier in Graphite Furnace Atomic Absorption Spectrometry

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Lead, tin, indium or selenium forms an alloy of a palladium matrix modifier during its atomization process in a graphite furnace. This process was studied by measuring the effective (atomic) vapor temperature, showing that the atomization occurred in specific phases of the alloy. It was found that Pb is atomized in the phases Pd3Pb2∼Pd3Pb, Sn in the phases Pd3Sn2∼Pd2Sn∼Pd3Sn, In in the phases PdIn3∼Pd2In3∼PdIn∼Pd2In, and Se in the phases PdmSnn∼Pd. In a Pb-Fe system having no solid solution at any concentration range, the temperature-rising curve was almost the same as the curve for Pb in the absence of other co-existing elements. Fe, as the co-existing element, did not influence the atomization of Pb. For an Ni-Pd alloy, having different characteristics to that of the above-mentioned alloys, the temperature of the sample rose, reached the melting point of Ni (of Pd), formed a molten alloy and then followed flash atomization, as if an explosion had occurred. This was because the melting point of the alloy was lower than the 100% Ni (or Pd) metal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. LVov, Spectrochim. Acta, 33B, 153 (1978).

    Article  CAS  Google Scholar 

  2. R. D. Ediger, At. Absorpt. Newsl., 14, 127 (1974).

    Google Scholar 

  3. G. F. Kirkbight, S. Hisao-Chan and R. D. Snook, At. Spectrosc, 1, 85 (1980).

    Google Scholar 

  4. L. Ping, W. Lei, K. Matsutnoto and K. Fuwa, Anal. Set, 1, 257 (1985).

    CAS  Google Scholar 

  5. L. Ping, K. Fuwa and K. Matsumoto, Anal. Chim. Acta, 171, 279 (1985).

    Article  CAS  Google Scholar 

  6. E. L. Henn, Anal. Chem., 47, 428 (1975).

    Article  CAS  Google Scholar 

  7. K. Saeed and Y. Thomassen, Anal. Chim. Acta, 130, 281 (1981).

    Article  CAS  Google Scholar 

  8. L.-Z. Jin and Z.-M. Ni, Can. J. Spectrosc, 26, 219 (1981).

    CAS  Google Scholar 

  9. B. Welz, G. Schlemmer and U. Voelkopf, Spectrochim. Acta, 39B, 501 (1984).

    Article  CAS  Google Scholar 

  10. L. M. Beach, Spectroscopy, 2, 21 (1987).

    CAS  Google Scholar 

  11. E. J. Hinderberger, M. L. Kaiser and S. R. Koirtyohann, At. Spectrosc, 2, 1 (1981).

    CAS  Google Scholar 

  12. J. E. Teague-Nishimura, T. Tominaga, T. Katsura and K. Matsumoto, Anal. Chem., 59, 1647 (1987).

    Article  CAS  Google Scholar 

  13. Y. Tada, T. Yonemoto, A. Iwasa and K. Nakazawa, Bunseki Kagaku, 29, 248 (1980).

    Article  CAS  Google Scholar 

  14. G. Schlemmer and B. Welz, Spectrochim. Acta, 14B, 1157 (1986).

    Article  Google Scholar 

  15. L. M. Voth-Beach and D. E. Shrader, Spectrocopy, 1, 48 (1986).

    Google Scholar 

  16. G. Scatchard and R. A. Westlund, J. Amer. Chem. Soc, 75, 4189 (1953).

    Article  CAS  Google Scholar 

  17. G. Scatchard and R. H. Boyd, J. Amer. Chem. Soc, 78, 3889 (1956).

    Article  CAS  Google Scholar 

  18. J. P. Pemsler and E. J. Rapperport, Trans. TMS-AIMK 242, 151 (1968).

    Google Scholar 

  19. J. P. Pemsler and E. J. Rapperort, Trans. TMS-AIME, 245, 1395 (1969).

    CAS  Google Scholar 

  20. J. P. Rapperport and J. P. Pemsler, Met. Trans., 3, 827 (1972).

    Article  CAS  Google Scholar 

  21. D. M. Masson and S. Pradham, Met. Trans., 4, 991 (1973).

    Article  CAS  Google Scholar 

  22. D. Bhattacharya and D. B. Masson, Met. Trans., 5, 1357 (1974).

    Article  CAS  Google Scholar 

  23. D. Bhattacharya and D. B. Masson, Met. Trans., 6, 2273 (1975).

    Article  Google Scholar 

  24. J. H. Yoon, Doctor Thesis, (Tohoku Univ.), (1991).

    Google Scholar 

  25. A. Walsh, U. S. Patent 2847899 (1958) which priority was claimed on Australian patent field on 17th, Nov. (1953).

    Google Scholar 

  26. Y. Terui, K. Yasuda and K. Hirokawa, Anal Sci., 7, 599 (1991).

    Article  CAS  Google Scholar 

  27. M. Hansen, “Constitution of Binary Alloys”, 2nd ed., p. 1030, McGraw Hill, New York, 1985.

    Google Scholar 

  28. M. Hansen, “Constitution of Binary Alloys”, 2nd ed., p. 1095, McGraw Hill, New York, 1985.

    Google Scholar 

  29. R. P. Elliott, “Constitution of Binary Alloys”, 1st Supplement, p. 733, McGraw Hill, New York, 1965.

    Google Scholar 

  30. R. P. Elliott, “Constitution of Binary Alloys”, 1st Supplement, p. 548, McGraw Hill, New York, 1965.

    Google Scholar 

  31. M. Hansen, “Constitution of Binary Alloys”, 2nd ed., p. 1125, McGraw Hill, New York, 1985.

    Google Scholar 

  32. R. E. Sturgeon and C. L. Chakrabarti, Spectrochim. Acta, 32B, 231 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oishi, K., Yasuda, K. & Hirokawa, K. Beginning of Atomization in Presence of Matrix Modifier in Graphite Furnace Atomic Absorption Spectrometry. ANAL. SCI. 7, 883–887 (1991). https://doi.org/10.2116/analsci.7.883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.7.883

Keywords

Navigation