Skip to main content
Log in

Stopped-Flow Time Difference Analysis A Review

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel analytical method which includes absorbance measurements by using stopped-flow apparatuses was developed, which can be applied to determine absorbance changes as low as 0.002 O.D. with good precision in a time range of less than seconds, even for background absorbances of 1.5 to 2.0 O.D. This method, termed “stopped-flow time difference analysis” (abbreviated to SFTDA), utilizes the progress curve of a reaction for both quantitative and qualitative analyses, based on the absorbance change and the rate of reaction, respectively. A differential kinetic analysis of mixed components is possible, due to the different reaction rates of the components, which can also be effective to exclude interference by coexisting materials. Several examples of the applications of the SFTD A method with macro-apparatuses are described, which include a determination of ascorbic acid down to 10-7 M, a highly sensitive determination of inorganic phosphate of ppb and sup-ppb level in environmental water, and an improvement in several characteristics of the methods for protein determination. Two types of micro-stopped-flow apparatuses were built, which need only 1/10 of the sample amount necessary for conventional macro-apparatuses, and still have a comparable performance. Their utility in clinical chemistry is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chance, J. Franklin Inst., 229, 455, 613, 737 (1940).

    Article  Google Scholar 

  2. B. Chance, J. Biol Chem., 151, 553 (1943).

    Article  CAS  Google Scholar 

  3. B. Chance, R. H. Eisenhardt, Q. H. Gibson and K. K. Lonberg-Holm ed., “Rapid Mixing and Sampling Technique in Biochemistry,” Academic Press, New York (1964).

    Google Scholar 

  4. K. Hiromi, S. Ono, S. Itoh and T. Nagamura, J. Biochem., 64, 897 (1968).

    Article  CAS  Google Scholar 

  5. J. B. Pausch and D. W. Margerum, Anal. Chem., 41, 226 (1969).

    Article  CAS  Google Scholar 

  6. B. Tonomura, H. Nakatani, M. Ohnishi, J. Yamaguchi-Ito and K. Hiromi, Anal. Biochem., 84, 380 (1978).

    Article  Google Scholar 

  7. K. Hiromi, H. Nagasawa-Fujimori, J. Yamaguchi-Ito, H. Nakatani, M. Ohnishi and B. Tonomura, Chem. Lett., 1977, 1333.

    Google Scholar 

  8. H. Nakatani and K. Hiromi, J. Biochem., 87, 1805 (1978).

    Article  Google Scholar 

  9. K. Hiromi, C. Kuwamoto and M. Ohnishi, Anal. Biochem., 101, 421 (1980).

    Article  CAS  Google Scholar 

  10. E. A. Guggenheim, Phil. Mag., 2, 538 (1926).

    Article  CAS  Google Scholar 

  11. F. J. Kézdy, J. Jaz and A. Bruylants, Bull Soc. Chim. Belg., 67, 689 (1958).

    Google Scholar 

  12. E. Swinbourne, J. Chem. Soc.. 1960, 2371.

    Google Scholar 

  13. A. Cornish-Bowden, “Principles of Enzyme Kinetics”, p. 7, Butterworths, London (1976).

    Google Scholar 

  14. R. Brdicka and P. Zuman, Coll. Czech. Chem. Communs., 15, 112 (1950).

    Article  Google Scholar 

  15. K. Kanaya and K. Hiromi, Chem. Lett., 1985, 1381.

    Google Scholar 

  16. K. Kanaya and K. Hiromi, Anal. Chim. Acta, 203, 35 (1987).

    Article  CAS  Google Scholar 

  17. H. J. Altmann, E. Fürstenau, A. Gielewski and L. Scholz, Fresenius’ Z. Anal. Chem., 256, 274 (1971).

    Article  CAS  Google Scholar 

  18. K. Kanaya and K. Hiromi, Anal. Sci., 3, 531 (1987).

    Article  CAS  Google Scholar 

  19. M. M. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  Google Scholar 

  20. K. Kanaya and K. Hiromi, Agric. Biol. Chem. [Tokyo], 51, 1885 (1987).

    CAS  Google Scholar 

  21. K. Kanaya and K. Hiromi, Agric. Biol. Chem. [Tokyo], in press.

  22. P. Strittmatter, in “Rapid Mixing and Sampling Technique in Biochemistry”, pp. 71–84, ed. B. Chance, R. H. Eisenhardt, Q. H. Gibson and K. K. Lonberg-Holm, Academic Press, New York (1964).

  23. A. K. Davies, J. Williams and R. B. Cundall, Lab. Pract., 1980, 929.

    Google Scholar 

  24. K. Hiromi, H. Nakatani and A. Tanaka, Abstract for International Symposium on Fast Reactions in Biological Systems, pp. 131–132 (1984), Kyoto.

    Google Scholar 

  25. A. Tanaka, M. Ito and K. Hiromi, J. Biochem., 100, 1379 (1986).

    Article  CAS  Google Scholar 

  26. K. Kitagishi, K. Hiromi, S. Tanase, F. Nagashima, Y. Morino, T. Nishino and S. Murao, J. Biochem., 103, 585 (1988).

    Article  CAS  Google Scholar 

  27. M. Kakitani, B. Tonomura and K. Hiromi, submitted to Biochim. Biophys. Acta.

  28. K. Hiromi, Trends Biochem. Sci., 3, 232 (1978).

    Article  CAS  Google Scholar 

  29. K. Hiromi, in “Method of Biochemical Analysis”, Vol. 26, pp. 137–164, ed. D. Glick, John Wiley & Sons, New York (1980).

    CAS  Google Scholar 

  30. K. Hiromi, “Kinetics of Fast Enzyme Reactions. Theory and Practice”, Kodansha-Halsted Press, Tokyo (1979).

    Google Scholar 

  31. K. Kanaya and K. Hiromi, Agric. Biol. Chem. [Tokyo], in press.

  32. K. Kanaya and K. Hiromi, submitted to Jpn. J. Clin. Chem.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiromi, K., Kanaya, Ki. Stopped-Flow Time Difference Analysis A Review. ANAL. SCI. 4, 445–454 (1988). https://doi.org/10.2116/analsci.4.445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.4.445

Keywords

Navigation