Skip to main content

Advertisement

Log in

Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Herein, we propose a concept for sensing based on density changes of microparticles (MPs) caused by a biochemical reaction. The MPs are levitated by a combined acoustic-gravitational force at a position determined by the density and compressibility. Importantly, the levitation is independent of the MPs sizes. When gold nanoparticles (AuNPs) are bound on the surface of polymer MPs through a reaction, the density of the MPs dramatically increases, and their levitation position in the acoustic-gravitational field is lowered. Because the shift of the levitation position is proportional to the number of AuNPs bound on one MP, we can determine the number of molecules involved in the reaction. The avidinbiotin reaction is used to demonstrate the effectiveness of this concept. The number of molecules involved in the reaction is very small because the reaction space is small for an MP; thus, the method has potential for highly sensitive detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Knopp, D. Tang, and R. Niessner, Anal. Chim. Acta, 2009, 647, 14.

    Article  CAS  PubMed  Google Scholar 

  2. S. Penn, Curr. Opin. Chem. Biol., 2003, 7, 609.

    Article  CAS  PubMed  Google Scholar 

  3. D. Liu, Z. Wang, A. Jin, X. Huang, X. Sun, F. Wang, Q. Yan, S. Ge, N. Xia, G. Niu, G. Liu, A. R. Hight Walker, and X. Chen, Angew. Chem., Int. Ed. Engl., 2013, 52, 14065.

    Article  CAS  PubMed  Google Scholar 

  4. E. Hutter and D. Maysinger, Trends Pharmacol. Sci., 2013, 34, 497.

    Article  CAS  PubMed  Google Scholar 

  5. P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, and R. Franco, Anal. Bioanal. Chem., 2008, 391, 943.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Hosomomi, T. Niide, R. Wakabayashi, M. Goto, and N. Kamiya, Anal. Sci., 2016, 32, 295.

    Article  CAS  PubMed  Google Scholar 

  7. N. Uehara, Y. Numanami, T. Oba, N. Onishi, and X. Xie, Anal. Sci., 2015, 31, 495.

    Article  CAS  PubMed  Google Scholar 

  8. B. Han, N. Choi, K. H. Kim, D. W. Lim, and J. Choo, J. Phys. Chem. C, 2011, 115, 6290.

    Article  CAS  Google Scholar 

  9. L. Guerrini, R. Arenal, B. Mannini, F. Chiti, R. Pini, P. Matteini, and R. A. Alvarez-Puebla, ACS Appl. Mater. Interfaces, 2015, 7, 9420.

    Article  CAS  PubMed  Google Scholar 

  10. H. Takei and T. Okamoto, Anal. Sci., 2016, 32, 287.

    Article  CAS  PubMed  Google Scholar 

  11. T. Kinoshita, K. Kiso, D. Q. Le, H. Shiigi, and T. Nagaoka, Anal. Sci., 2016, 32, 301.

    Article  CAS  PubMed  Google Scholar 

  12. C. Moser, T. Mayr, and I. Klimant, Anal. Chim. Acta, 2006, 558, 102.

    Article  CAS  Google Scholar 

  13. H. Jeon, Y. Kim, and G. Lim, Sci. Rep., 2016, 6, 19911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Choi and J. K. Park, Lab Chip, 2005, 5, 1161.

    Article  CAS  PubMed  Google Scholar 

  15. R. Pethig, Biomicrofluidics, 2010, 4.

    Google Scholar 

  16. G. L. Lettieri, A. Dodge, G. Boer, N. F. de Rooij, and E. Verpoorte, Lab Chip, 2003, 3, 34.

    Article  CAS  PubMed  Google Scholar 

  17. G. Boer, R. Johann, J. Rohner, F. Merenda, G. Delacretaz, P. Renaud, and R. P. Salathe, Rev. Sci. Instrum., 2007, 78, 116101.

    Article  CAS  PubMed  Google Scholar 

  18. M. Harada, T. Kido, T. Masudo, and T. Okada, Anal. Sci., 2005, 21, 491.

    Article  CAS  PubMed  Google Scholar 

  19. P. Glynne-Jones, R. J. Boltryk, N. R. Harris, A. W. Cranny, and M. Hill, Ultrasonics, 2010, 50, 68.

    Article  CAS  PubMed  Google Scholar 

  20. K. A. Ohiri, B. A. Evans, C. W. T. Shields, R. A. Gutierrez, N. J. Carroll, B. B. Yellen, and G. P. Lopez, ACS Appl. Mater. Interfaces, 2016, 8, 25030.

    Article  CAS  PubMed  Google Scholar 

  21. F. Petersson, L. Aberg, A.-M. Sward-Nilsson, and T. Laurell, Anal. Chem., 2007, 79, 5117.

    Article  CAS  PubMed  Google Scholar 

  22. S. Hosseini, M. M. Aeinehvand, S. M. Uddin, A. Benzina, H. A. Rothan, R. Yusof, L. H. Koole, M. J. Madou, I. Djordjevic, and F. Ibrahim, Sci. Rep., 2015, 5, 16485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. N. Generalova and V. P. Zubov, Poly. Sci., Ser. B, 2016, 58, 385.

    Article  CAS  Google Scholar 

  24. X. Zhao, R. Tapec-Dytioco, and W. Tan, J. Am. Chem. Soc., 2003, 125, 11474.

    Article  CAS  PubMed  Google Scholar 

  25. D. Ogasawara, N. S. Hachiya, K. Kaneko, K. Sode, and K. Ikebukuro, Biosens. Bioelectron., 2009, 24, 1372.

    Article  CAS  PubMed  Google Scholar 

  26. M. Sackmann and A. Materny, J. Raman Spectrosc., 2006, 37, 305.

    Article  CAS  Google Scholar 

  27. A. C. Crawford, A. Skuratovsky, and M. D. Porter, Anal. Chem., 2016, 88, 6515.

    Article  CAS  PubMed  Google Scholar 

  28. T. Masudo and T. Okada, Anal. Chem., 2001, 73, 3467.

    Article  CAS  PubMed  Google Scholar 

  29. T. Masudo and T. Okada, Anal. Sci., 2004, 20, 753.

    Article  CAS  PubMed  Google Scholar 

  30. T. Kanazaki, S. Hirawa, M. Harada, and T. Okada, Anal. Chem., 2010, 82, 4472.

    Article  CAS  PubMed  Google Scholar 

  31. S. Hirawa, T. Masudo, and T. Okada, Anal. Chem., 2007, 79, 3003.

    Article  CAS  PubMed  Google Scholar 

  32. M. R. Gregory and K. A. Johnston, N. Z. J. Geol. Geophys., 1987, 30, 317.

    Article  CAS  Google Scholar 

  33. C. Charcosset, I. Limayem, and H. Fessi, J. Chem. Technol. Biotechnol., 2004, 79, 209.

    Article  CAS  Google Scholar 

  34. M. J. Waner and D. P. Mascotti, J. Biochem. Biophys. Methods, 2008, 70, 873.

    Article  CAS  PubMed  Google Scholar 

  35. G. Kada, H. Falk, and H. J. Gruber, Biochim. Biophys. Acta., 1999, 1427, 33.

    Article  CAS  PubMed  Google Scholar 

  36. L. Pugliese, A. Coda, M. Malcovati, and M. Bolognesi, J. Mol. Biol., 1993, 231, 698.

    Article  CAS  PubMed  Google Scholar 

  37. K. Yoshioka and Y. Kawasima, Acustica, 1955, 5, 167.

    Google Scholar 

  38. B. Hammarström, T. Laurell, and J. Nilsson, Lab Chip, 2012, 12, 4296.

    Article  PubMed  Google Scholar 

  39. T. Kanazaki and T. Okada, Anal. Chem., 2012, 84, 10750.

    Article  CAS  PubMed  Google Scholar 

  40. Kagaku Binran (Chemical Index)”, ed. The Chemical Society of Japan, 4th ed., 1993, Maruzen, Tokyo.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Challenging Exploratory Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Okada.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, A., Inoue, Y., Harada, M. et al. Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles. ANAL. SCI. 33, 939–944 (2017). https://doi.org/10.2116/analsci.33.939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.939

Keywords

Navigation