Skip to main content
Log in

Bioanalytical Method for the Determination of Hydroxyproline in Mouse Kidney by High-Performance Liquid Chromatography with Tandem Mass Spectrometric Detection

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An analytical method was developed and validated for the measurement of hydroxyproline (Hyp) levels in mouse kidney by high-performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS) using an analytical column specially designed for the LC/MS/MS analysis for intact amino acids. Tissue hydrolyzed with hydrochloric acid could be directly injected into the LC/MS/MS, as well as separated and detected using the deuterium labelled Hyp as an internal standard. The calibration curve showed good linearity from 5 to 500 nmol/mg of tissue; the precision and accuracy, including within- and between-run, were less than 6% and within 100 ± 6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Parviainen, K. Jaaskelainen, H. Kroger, I. Arnala, and E. Alhava, Clin. Chim. Acta, 1999, 279, 145.

    Article  CAS  PubMed  Google Scholar 

  2. F. Perdelli, M. L. Cristina, M. Sartini, and P. Orlando, Toxicol. Lett., 2002, 134, 319.

    Article  CAS  PubMed  Google Scholar 

  3. R. L. Chevalier, M. S. Forbes, and B. A. Thornhill, Kidney Int., 2009, 75, 1145.

    Article  PubMed  Google Scholar 

  4. H.-C. Yang, Y. Zuo, and A. B. Fogo, Drug Discov. Today Dis. Models, 2010, 7, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Kamata, K. Hosono, T. Fujita, K. Kamata, and M. Majima, Biomed. Pharmacoter., 2015, 70, 174.

    Article  CAS  Google Scholar 

  6. H. Inoue, H. Iguchi, A. Kono, and Y. Tsuruta, J. Chromatogr. B, 2001, 757, 369.

    Article  CAS  Google Scholar 

  7. P. R. Hutson, M. E. Crawford, and R. L. Sorkness, J. Chromatogr. B, 2003, 791, 427.

    Article  CAS  Google Scholar 

  8. E. Kindt, K. Gueneva-Boucheva, M. D. Rekhter, J. Humphries, and H. Hallak, J. Pharm. Biomed. Anal., 2003, 33, 1081.

    Article  CAS  PubMed  Google Scholar 

  9. A. Conventz, A. Musiol, C. Brodowsky, A. Muller-Lux, P. Dewes, T. Kraus, and T. Schettgen, J. Chromatogr. B, 2007, 860, 78.

    Article  CAS  Google Scholar 

  10. M. L. Colgrave, P. G. Allingham, and A. Jones, J. Chromatogr. A, 2007, 1212, 150.

    Article  Google Scholar 

  11. M. Oufir, N. Schulz, P. S. S. Vallikhan, E. Wilheim, K. Burg, J.-F. Hausman, L. Hoffmann, and C. Guignard, J. Chromatogr. A, 2009, 1216, 1094.

    Article  CAS  PubMed  Google Scholar 

  12. A.-L. Zhu, T. Pneg, D.-D. Chen, P. Wang, G.-M. Wang, J.-H. Wang, H.-Y. Jiang, C.-L. Fan, and Y. Chen, J. Sep. Sci., 2014, 37, 1773.

    Article  CAS  PubMed  Google Scholar 

  13. B. Vatansever, M. O. Senal, M. Akgoz, and A. C. Goren, Anal. Bioanal. Chem., 2015, 407, 1981.

    Article  CAS  PubMed  Google Scholar 

  14. T. Ikehara, N. Habu, I. Nishino, and H. Kamimori, Anal. Chim. Acta, 2005, 536, 129.

    Article  CAS  Google Scholar 

  15. R. Tomita, K. Todoroki, H. Maruoka, H. Yoshida, T. Fujioka, M. Nakashima, M. Yamaguchi, and H. Nohta, Anal. Sci., 2016, 32, 893.

    Article  CAS  PubMed  Google Scholar 

  16. M. Kudo, T. Katayoshi, K. Kobayashi-Nakamura, M. Akagawa, and K. Tsuji-Naito, Biochem. Biophys. Res. Commun., 2016, 475, 335.

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Schanstra, E. Neau, P. Drogoz, M. A. A. Gomez, J. M. L. Novoa, D. Calise, C. Pecher, M. Bader, J.-P. Girolami, and J.-L. Bascands, J. Clin. Invest., 2002, 110, 371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Nagatani, Y. Muto, H. Sato, and M. Iijima, Yakugaku Zasshi, 1986, 106, 41.

    Article  CAS  PubMed  Google Scholar 

  19. B. Dejaegher, D. Mangelings, and Y. V. Heyden, J. Sep., Sci., 2008, 31, 1438.

    Article  CAS  PubMed  Google Scholar 

  20. J. Bernal, A. M. Ares, J. Pol, and S. K. Wiedmer, J. Chromatogr. A, 2011, 1218, 7438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Takayuki Kuroda, Shiho Konishi, Norito Yoshimura, and Risa Yamanaka for the preparing the mice kidney samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamimori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiota, R., Morita, H., Matsumoto, T. et al. Bioanalytical Method for the Determination of Hydroxyproline in Mouse Kidney by High-Performance Liquid Chromatography with Tandem Mass Spectrometric Detection. ANAL. SCI. 33, 719–722 (2017). https://doi.org/10.2116/analsci.33.719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.719

Keywords

Navigation