Skip to main content
Log in

Hairpin-shaped DNA Templated Copper Na nopar tides for Fluorescence Detection of Adenosine Triphosphate Based on Ligation-mediated Exonuclease Cleavage

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

DNA-templated copper nanoparticles (CuNPs) have recently received considerable interest as functional fluorescent probes for biochemical analysis. In this work, a novel ATP-dependent ligation reactions (ATP-DLR) based ATP assay strategy was proposed by using hairpin-shaped (HS) DNA templated CuNPs as a fluorescent probe. Nick sealing by T4 DNA ligase leads to the formation of intact HS DNA, which can resist the exonuclease cleavage and be taken as the template for CuNPs formation, resulting in strong fluorescence. The proposed ATP detection is label free, sensitive and highly selective, and it has good linearity from 0.02 to 4 μM and a detection limit of 7 nM. This strategy is expected to promote the exploitation and application of DNA-templated CuNPs in biochemical and biomedical studies, and holds great promise in fluorescence detection for other ligation-related biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Xie, Y. G. Zheng, and J. Y. Ying, J. Am. Chem. Soc., 2009, 131, 888.

    Article  CAS  PubMed  Google Scholar 

  2. S. I. Tanaka, J. Miyazaki, D. K. Tiwari, T. Jin, and Y. Inouye, Angew. Chem., Int. Ed., 2011, 50, 431.

    Article  CAS  Google Scholar 

  3. C. I. Richards, S. Choi, J. C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y. L. Tzeng, and R. M. Dickson, J. Am. Chem. Soc., 2008, 130, 5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Rotaru, S. Dutta, E. Jentzsch, K. Gothelf, and A. Mokhir, Angew. Chem., Int. Ed., 2010, 49, 5665.

    Article  CAS  Google Scholar 

  5. N. Ma, H. E. Sargent, and O. S. Kelley, Nat. Nanotechnol., 2009, 4, 121.

    Article  CAS  PubMed  Google Scholar 

  6. H. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez, and J. H. Werner, Nano Lett., 2010, 10, 3106.

    Article  CAS  PubMed  Google Scholar 

  7. Z. D. Wang, J. Q. Zhang, J. M. Ekman, P. J. A. Kenis, and Y. Lu, Nano Lett., 2010, 10, 1886.

    Article  CAS  PubMed  Google Scholar 

  8. W. W. Guo, J. P. Yuan, Q. Z. Dong, and E. K. Wang, J. Am. Chem. Soc., 2010, 132, 932.

    Article  CAS  PubMed  Google Scholar 

  9. Y. T. Su, G. Y. Lan, W. Y. Chen, and H. T. Chang, Anal. Chem., 2010, 82, 8566.

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, X. Zhong, H. Zhang, X. C. Le, and J. J. Zhu, Anal. Chem., 2012, 84, 5170.

    Article  CAS  PubMed  Google Scholar 

  11. J. Sharma, H. C. Yeh, H. Z. Yoo, J. H. Werner, and J. S. Martinez, Chem. Commun., 2010, 47, 2294.

    Article  Google Scholar 

  12. J. H. Yu, S. Choi, and R. M. Dickson, Angew. Chem., Int. Ed., 2009, 48, 318.

    Article  CAS  Google Scholar 

  13. A. V. Gourine, E. Llaudet, N. Dale, and K. M. Spyer, Nature, 2005, 436, 108.

    Article  CAS  PubMed  Google Scholar 

  14. Z. Qing, X. He, D. He, K. Wang, F. Xu, T. Qing, and X. Yang, Angew. Chem., Int. Ed., 2013, 52, 9719.

    Article  CAS  Google Scholar 

  15. H. B. Wang, H. D. Zhang, Y. Chen, and Y. M. Liu, Biosens. Bioelectron., 2015, 74, 581.

    Article  CAS  PubMed  Google Scholar 

  16. L. Zhang, Q. Y. Cai, J. Li, J. Ge, J. Y. Wang, Z. Z. Dong, and Z. H. Li, Biosens. Bioelectron., 2015, 69, 77.

    Article  CAS  PubMed  Google Scholar 

  17. Z. Zhou, Y. Du, and S. Dong, Anal. Chem., 2011, 83, 5122.

    Article  CAS  PubMed  Google Scholar 

  18. Z. H. Qing, T. P. Qing, Z. G. Mao, X. X. He, K. M. Wang, Z. Zou, H. Shi, and D. G. He, Chem. Commun., 2014, 50, 12746.

    Article  CAS  Google Scholar 

  19. J. H. Chen, J. Liu, Z. Y. Fang, and L. W. Zeng, Chem. Commun., 2012, 48, 1057.

    Article  CAS  Google Scholar 

  20. X. F. Jia, J. Li, L. Han, J. T. Ren, X. Yang, and E. K. Wang, ACS Nano, 2012, 6, 3311.

    Article  CAS  PubMed  Google Scholar 

  21. R. Hu, Y. R. Liu, R. M. Kong, M. J. Donovan, X. B. Zhang, W. H. Tan, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 2013, 42, 31.

    Article  CAS  PubMed  Google Scholar 

  22. L. L. Zhang, J. J. Zhao, H. Zhang, J. H. Jiang, and R. Q. Yu, Biosens. Bioelectron., 2013, 44, 6.

    Article  CAS  PubMed  Google Scholar 

  23. F. Z. Xu, H. Shi, X. X. He, K. M. Wang, D. G. He, Q. P. Guo, Z. H. Qing, L. A. Yan, X. S. Ye, D. Li, and J. L. Tang, Anal. Chem., 2014, 86, 6976.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhu, H. J. Wang, L. Wang, J. Zhu, and W. Jiang, ACS Appl. Mater. Interfaces, 2016, 8, 2573.

    Article  CAS  PubMed  Google Scholar 

  25. T. Perez-ruiz, C. Martine-Lozano, V. Tomas, and J. Martin, Anal. Bioanal. Chem., 2003, 377, 189.

    Article  CAS  PubMed  Google Scholar 

  26. J. Wang, Y. X. Jiang, C. S. Zhou, and X. H. Fang, Anal. Chem., 2005, 77, 3542.

    Article  CAS  PubMed  Google Scholar 

  27. K. T. Bush, S. H. Keller, and S. K. Nigam, J. Clin. Invest., 2000, 106, 621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Przedborski and M. Vila, Clin. Neurosci. Res., 2001, 1, 407.

    Article  CAS  Google Scholar 

  29. R. A. Harkness and O. D. Saugstad, Scand. J. Clin. Lab. Invest., 1997, 57, 655.

    Article  CAS  PubMed  Google Scholar 

  30. C. J. Bell, G. Manfredi, E. J. Griffiths, and G. A. Rutter, Methods Cell Biol., 2007, 80, 341.

    Article  CAS  PubMed  Google Scholar 

  31. C. Li, M. Numata, M. Takeuchi, and S. Shinkai, Angew. Chem., Int. Ed., 2005, 44, 6371.

    Article  CAS  Google Scholar 

  32. S. Mizukami, T. Nagano, Y. Urano, A. Odani, and K. Kikuchi, J. Am. Chem. Soc., 2002, 124, 3920.

    Article  CAS  PubMed  Google Scholar 

  33. S. C. McCleskey, M. J. Griffin, S. E. Schneider, J. T. McDevitt, and E. V. Anslyn, J. Am. Chem. Soc., 2003, 125, 1114

    Article  CAS  PubMed  Google Scholar 

  34. Y. He, Z. G. Wang, H. W. Tang, and D. W. Pang, Biosens. Bioelectron., 2011, 29, 76.

    Article  CAS  PubMed  Google Scholar 

  35. W. P. Zhu, Z. W. Zhao, Z. Li, J. H. Jiang, G. L. Shen, and R. Q. Yu, Analyst, 2012, 137, 5506.

    Article  CAS  PubMed  Google Scholar 

  36. W. P. Zhu, Z. Li, Z. W. Zhao, J. H. Jiang, G. L. Shen, and R. Q. Yu, New J. Chem., 2013, 37, 927.

    Article  CAS  Google Scholar 

  37. L. M. Lu, X. B. Zhang, R. M. Kong, B. Yang, and W. Tan, J. Am. Chem. Soc., 2011, 133, 11686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Cai, Z. Z. Chen, X. M. Dong, H. W. Tang, and D. W. Pang, Biosens. Bioelectron., 2011, 29, 46.

    Article  CAS  PubMed  Google Scholar 

  39. J. M. Liu and X. P. Yan, Biosens. Bioelectron., 2012, 36, 135.

    Article  CAS  PubMed  Google Scholar 

  40. H. Z. He, V. P. Ma, K. H. Leung, D. S. Chan, H. Yang, Z. Cheng, C. H. Leung, and D. L. Ma, Analyst, 2012, 137, 1538.

    Article  CAS  PubMed  Google Scholar 

  41. X. R. Zhang, Y. Q. Zhao, S. G. Li, and S. S. Zhang, Chem. Commun., 2010, 46, 9173.

    Article  CAS  Google Scholar 

  42. X. L. Zuo, S. P. Song, J. Zhang, D. Pan, L. H. Wang, and C. H. Fan, J. Am. Chem. Soc., 2007, 129, 1042.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Henan Province Foundation and Advanced Technology Research Program (No. 142300410348), the Research Start Funds Sponsored Program of Zhoukou Normal University (ZKNUB2013002), the Natural Science Basic Research Project of the Education Department of Henan Province (Grant No. 17A150057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Dai, L., Liu, Z. et al. Hairpin-shaped DNA Templated Copper Na nopar tides for Fluorescence Detection of Adenosine Triphosphate Based on Ligation-mediated Exonuclease Cleavage. ANAL. SCI. 33, 203–207 (2017). https://doi.org/10.2116/analsci.33.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.203

Keywords

Navigation