Skip to main content
Log in

Specificity of MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are attracting considerable attention as potential biomarkers for the early diagnosis of cancer. We have been developing a detection method for miRNAs on a microfluidic chip with external-power-free fluid pumping and enzyme-free amplification. The assay is completed within 20 min. Here, we describe the specificity of this miRNA detection method. First, the specificity against mismatched sequences was investigated. The nonspecific detection of a 2-nucleotide mismatched sequence was negligible, while that of a 1-nucleotide mismatched sequence was observed to a reasonable extent. Next, the disturbance in mature miRNA detection by existence of its precursor miRNA was evaluated. One precursor miRNA out of four tested showed significant nonspecific responses at 1 nM or higher concentrations. However, those responses were much lower than that of the target mature miRNA at 0.1 nM. Finally, we tried to detect three endogenous miRNAs, which are known to be potential cancer biomarkers, in human leucocyte total RNA. The measured concentraions of these miRNAs agreed well with those obtained by quantitative reverse transcription polymerase chain reaction. These results indicate that the on-chip miRNA detection method has good specificity, which is promising for applications to real biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Friedman, K. K. H. Farh, C. B. Burge, and D. P. Bartel, Genome Res., 2009, 19, 92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. V. Iorio, M. Ferracin, C. G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J. P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G. A. Calin, P. Querzoli, M. Negrini, and C. M. Croce, Cancer Res., 2005, 65, 7065.

    Article  CAS  PubMed  Google Scholar 

  3. G. A. Calin and C. M. Croce, Nat. Rev. Cancer, 2006, 6, 857.

    Article  CAS  PubMed  Google Scholar 

  4. P. S. Mitchell, R. K. Parkin, E. M. Kroh, B. R. Fritz, S. K. Wyman, E. L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K. C. O’Briant, A. Allen, D. W. Lin, N. Urban, C. W. Drescher, B. S. Knudsen, D. L. Stirewalt, R. Gentleman, R. L. Vessella, P. S. Nelson, D. B. Martin, and M. Tewari, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 10513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. A. Weber, D. H. Baxter, S. L. Zhang, D. Y. Huang, K. H. Huang, M. J. Lee, D. J. Galas, and K. Wang, Clin. Chem., 2010, 56, 1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Turchinovich, L. Weiz, A. Langheinz, and B. Burwinkel, Nucleic Acids Res., 2011, 39, 7223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Wang, Y. Yuan, J. H. Cho, S. McClarty, D. Baxter, and D. J. Galas, PLoS One, 2012, 7, e41561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Yamamoto, N. Kosaka, M. Tanaka, F. Koizumi, Y. Kanai, T. Mizutani, Y. Murakami, M. Kuroda, A. Miyajima, T. Kato, and T. Ochiya, Biomarkers, 2009, 14, 529.

    Article  CAS  PubMed  Google Scholar 

  9. N. Kosaka, H. Iguchi, and T. Ochiya, Cancer Sci., 2010, 101, 2087.

    Article  CAS  PubMed  Google Scholar 

  10. M. Tsujiura, D. Ichikawa, S. Komatsu, A. Shiozaki, H. Takeshita, T. Kosuga, H. Konishi, R. Morimura, K. Deguchi, H. Fujiwara, K. Okamoto, and E. Otsuji, Brit. J. Cancer, 2010, 102, 1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Zhou, L. Yu, X. Gao, J. Hu, J. P. Wang, Z. Dai, J. F. Wang, Z. Y. Zhang, S. H. Lu, X. W. Huang, Z. Wang, S. J. Qiu, X. Y. Wang, G. H. Yang, H. C. Sun, Z. Y. Tang, Y. Wu, H. G. Zhu, and J. Fan, J. Clin. Oncol., 2011, 29, 4781.

    Article  CAS  PubMed  Google Scholar 

  12. C. Zhu, C. Ren, J. Han, Y. Ding, J. Du, N. Dai, J. Dai, H. Ma, Z. Hu, H. Shen, Y. Xu, and G. Jin, Brit. J. Cancer, 2014, 110, 2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Baker, Nat. Methods, 2010, 7, 687.

    Article  CAS  PubMed  Google Scholar 

  14. B. N. Johnson and R. Mutharasan, Analyst, 2014, 139, 1576.

    Article  CAS  PubMed  Google Scholar 

  15. R. M. Graybill and R. C. Bailey, Anal. Chem., 2016, 88, 431.

    Article  CAS  PubMed  Google Scholar 

  16. T. Ueno and T. Funatsu, PLoS One, 2014, 9, e90920

    Article  PubMed  PubMed Central  Google Scholar 

  17. H. Lee, R. L. Srinivas, A. Gupta, and P. S. Doyle, Angew. Chem., Int. Ed., 2015, 54, 2477.

    Article  CAS  Google Scholar 

  18. S. Hofmann, Y. W. Huang, P. Paulicka, A. Kappel, H. A. Katus, A. Keller, B. Meder, C. F. Stahler, and W. Gumbrecht, Anal. Chem., 2015, 87, 12104.

    Article  CAS  PubMed  Google Scholar 

  19. H. Arata, H. Komatsu, A. Han, K. Hosokawa, and M. Maeda, Analyst, 2012, 137, 3234.

    Article  CAS  PubMed  Google Scholar 

  20. H. Arata, H. Komatsu, K. Hosokawa, and M. Maeda, PLoS One, 2012, 7, e48329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Ishihara, K. Hasegawa, K. Hosokawa, and M. Maeda, Anal. Sci., 2015, 31, 573.

    Article  CAS  PubMed  Google Scholar 

  22. K. Hosokawa, K. Sato, N. Ichikawa, and M. Maeda, Lab Chip, 2004, 4, 181.

    Article  CAS  PubMed  Google Scholar 

  23. K. Hosokawa, M. Omata, and M. Maeda, Anal. Chem., 2007, 79, 6000.

    Article  CAS  PubMed  Google Scholar 

  24. K. Hosokawa and M. Maeda, Lab Chip, 2009, 9, 464.

    Article  CAS  PubMed  Google Scholar 

  25. R. I. Gregory and R. Shiekhattar, Cancer Res., 2005, 65, 3509.

    Article  CAS  PubMed  Google Scholar 

  26. “UNAFold” web site, http://unafold.rna.albany.edu/, accessed July 11, 2016.

  27. “miRBase” web site, http://www.mirbase.org/index.shtml, accessed July 11, 2016.

Download references

Acknowledgments

This work was suppoerted by KAKENHI (25350581), JST Center of Innovation Program, and RIKEN Junior Research Associate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Hosokawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, K., Negishi, R., Matsumoto, M. et al. Specificity of MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification. ANAL. SCI. 33, 171–177 (2017). https://doi.org/10.2116/analsci.33.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.171

Keywords

Navigation