Skip to main content
Log in

Evaluating the Aging of Multiple Emulsions Using Resonance- Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry was applied to measurements of multiple emulsions with no pretreatment; a method for the quantitative evaluation of aging was proposed. We prepared water-in- oil-in-water (W/O/W) multiple emulsions containing toluene and m-phenylenediamine. The samples were measured immediately following both preparation and after having been stirred for 24 h. Time profiles of the peak areas for each analyte species were obtained, and several intense spikes for toluene could be detected from each sample after stirring, which suggests that the concentration of toluene in the middle phase had increased during stirring. On the other hand, in the case of a W/O/W multiple emulsion containing phenol and m-phenylenediamine, spikes for m-phenylenediamine, rather than phenol, were detected after stirring. In the present study, the time-profile data were converted into a scatter plot in order to quantitatively evaluate the aging. As a result, the ratio of the plots where strong signal intensities of toluene were detected increased from 8.4% before stirring to 33.2% after stirring for 24 h. The present method could be a powerful tool for evaluating multiple emulsions, such as studies on the kinetics of the encapsulation and release of active ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, “Surfactants and Polymers in Aqueous Solution”, 2nd ed., 2003, John Wiley & Sons, Chichester.

    Google Scholar 

  2. G. Vélez, M. A. Fernandez, J. Munoz, P. A. Williams, and R. J. English, J. Agric. Food Chem., 2003, 57, 265.

    Article  Google Scholar 

  3. M. M. Robins, Curr. Opin. Colloid Interface Sci., 2000, 5, 265.

    Article  CAS  Google Scholar 

  4. I. Capek, Adv. Colloid Interface Sci., 2004, 707, 125.

    Article  Google Scholar 

  5. S. Matsumoto and M. Kohda, J. Colloid Interface Sci., 1980, 73, 13.

    Article  CAS  Google Scholar 

  6. L. Auvray, J.-P. Cotton, R. Ober, and C. Taupin, J. Physique, 1984, 45, 913.

    Article  CAS  Google Scholar 

  7. S. Arima, S. Ueno, A. Ogawa, and K. Sato, Langmuir, 2009, 25, 9777.

    Article  CAS  PubMed  Google Scholar 

  8. S. A. Gundersen and J. Sjöblom, Colloid Polym. Sci., 1999, 277, 462.

    Article  CAS  Google Scholar 

  9. S. Farahmand, H. Tajerzadeh, and E. S. Farboud, Pharm. Dev. Technol., 2006, 77, 255.

    Article  Google Scholar 

  10. D. J. McClements, E. A. Decker, and J. Weiss, J. Food Sci., 2007, 72, R109.

    Article  CAS  PubMed  Google Scholar 

  11. C. A. Smith, X. Li, T. H. Mize, T. D. Sharpe, E. I. Graziani, C. Abell, and W. T. S. Huck, Anal. Chem., 2013, 85, 3812.

    Article  CAS  PubMed  Google Scholar 

  12. H. Ishigami, Y. Tsuda, and T. Uchimura, Anal. Methods, 2014, 6, 5615.

    Article  CAS  Google Scholar 

  13. D. M. Lubman and R. N. Zare, Anal. Chem., 1982, 54, 2117.

    Article  CAS  Google Scholar 

  14. R. Zenobi, J.-M. Philippoz, P. R. Buseck, and R. N. Zare, Science, 1989, 246, 1026.

    Article  CAS  PubMed  Google Scholar 

  15. J. Matsumoto, C.-H. Lin, and T. Imasaka, Anal. Chem., 1997, 69, 4524.

    Article  CAS  Google Scholar 

  16. R. Cohen, B. Brauer, E. Nir, L. Grace, and M. S. de Vries, J. Phys. Chem. A, 2000, 704, 6351.

    Article  Google Scholar 

  17. J. Matsumoto, K. Misawa, S. Ishiuchi, and M. Fujii, Chem. Lett., 2009, 38, 74.

    Article  CAS  Google Scholar 

  18. R. Zimmermann, Anal. Bioanal. Chem., 2013, 405, 6901.

    Article  CAS  PubMed  Google Scholar 

  19. A. Hamachi, T. Okuno, T. Imasaka, Y. Kida, and T. Imasaka, Anal. Chem., 2015, 87, 3027.

    Article  CAS  PubMed  Google Scholar 

  20. T. Fujii and T. Uchimura, Anal. Methods, 2015, 7, 2611.

    Article  CAS  Google Scholar 

  21. T. E. Hauler, U. Boesl, S. Kaesdorf, and R. Zimmermann, J. Chromatogr. A, 2004, 1058, 39.

    Article  CAS  PubMed  Google Scholar 

  22. B. K. Gullett, L. Oudejans, D. Tabor, A. Touati, and S. Ryan, Environ. Sci. Technol., 2012, 46, 923.

    Article  CAS  PubMed  Google Scholar 

  23. S. Sakurai and T. Uchimura, Anal. Sci., 2014, 30, 891.

    Article  CAS  PubMed  Google Scholar 

  24. S. Otto, T. Streibel, S. Erdmann, M. Sklorz, D. Schulz-Bull, and R. Zimmermann, Anal. Chim. Acta, 2015, 855, 60.

    Article  CAS  PubMed  Google Scholar 

  25. H. Fukaya, Y. Tsuda, and T. Uchimura, Anal. Methods, 2016, 8, 270.

    Article  CAS  Google Scholar 

  26. C. T. Chiou, V. H. Freed, D. W. Schmedding, and R. L. Kohnert, Environ. Sci. Technol., 1977, 11, 475.

    Article  CAS  Google Scholar 

  27. A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 1971, 71, 525.

    Article  CAS  Google Scholar 

  28. Material Safety Data Sheet, m-Phenylenediamine, MSDS No. EW160151, 2004, Wako Pure Chemical Industries, Ltd.

    Google Scholar 

  29. H. Okochi and M. Nakano, Adv. Drug Deliv. Rev., 2000, 45, 5.

    Article  CAS  PubMed  Google Scholar 

  30. F. Leal-Calderon, V. Schmitt, and J. Bibette, “Emulsion Science Basic Principles”, 2nd ed., 2007, Springer, New York.

    Book  Google Scholar 

  31. A. Aserin, “Multiple Emulsions Technology and Applications”, 2008, John Wiley & Sons, Hoboken, NJ.

    Google Scholar 

  32. L.-Y. Chu, A. S. Utada, R. K. Shah, J.-W. Kim, and D. A. Weitz, Angew. Chem. Int. Ed., 2007, 46, 8970.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant provided by the JGC-S Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Uchimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuda, Y., Uchimura, T. Evaluating the Aging of Multiple Emulsions Using Resonance- Enhanced Multiphoton Ionization Time-of-Flight Mass Spectrometry. ANAL. SCI. 32, 789–795 (2016). https://doi.org/10.2116/analsci.32.789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.789

Keywords

Navigation