Skip to main content
Log in

Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The strontium (Sr) isotope ratio (87Sr/86Sr) and Sr content were used to trace the geographical origin of onions from Japan and other countries, including China, the United States of America, New Zealand, Australia, and Thailand. The mean 87Sr/86Sr ratio and Sr content (dry weight basis) for onions from Japan were 0.70751 and 4.6 mg kg−1, respectively, and the values for onions from the other countries were 0.71199 and 12.4 mg kg−1, respectively. Linear discriminant analysis was performed to classify onions produced in Japan from those produced in the other countries based on the Sr data. The discriminant equation derived from linear discriminant analysis was evaluated by 10-fold cross validation. As a result, the origins of 92% of onions were correctly classified between Japan and the other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Henderson, C. R. Handy, and S. Neff, “Globalization of the Processed Foods Market”, ERS/USDA Agricultural Economics Report No. 742, 1996, Washington, D.C.

    Google Scholar 

  2. United Nations, “Guide to Geographical Indications: Linking Products and Their Origins”, 2010, United Nations, New York.

    Google Scholar 

  3. Statistics Department, Minister’s Secretariat, Ministry of Agriculture, Forestry and Fisheries, “Amount of Production Statistics for Agricultural Product in 2012”, http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_yasai/index.html/.

  4. Ministry of Finance Japan, “Trade Statistics of Japan for onion in 2012”, http://www.customs.go.jp/toukei/srch/index.htm?M=03&P=0/.

  5. D. M. A. M. Luykx and S. M. van Ruth, Food Chem., 2008, 707, 897.

    Article  Google Scholar 

  6. P. Cheajesadagul, C. Arnaudguilhem, J. Shiowatana, A. Siripinyanond, and J. Szpunar, Food Chem., 2013, 747, 3504.

    Article  Google Scholar 

  7. G. Lo Feudo, A. Naccarato, G. Sindona, and A. Tagarelli, J. Agric. Food Chem., 2010, 58, 3801.

    Article  CAS  PubMed  Google Scholar 

  8. C. Herrero Latorre, J. Barciela Garcia, S. Garcia Martin, and R. M. Pena Crecente, J. Agric. Food Chem., 2013, 67, 8444.

    Article  Google Scholar 

  9. Z. Hubalkova, P. Kralik, J. Kasalova, and E. Rencova, J. Agric. Food Chem., 2008, 56, 3454.

    Article  CAS  PubMed  Google Scholar 

  10. K. Hara, Y. Kon, S. Sasazaki, F. Mukai, and H. Mannen, Anim. Sci. J., 2010, 87, 506.

    Article  Google Scholar 

  11. C. Montealegre, M. L. Marina Alegre, and C. Garcia-Ruiz, J. Agric. Food Chem., 2010, 58, 28.

    Article  CAS  PubMed  Google Scholar 

  12. F. Angerosa, O. Bréas, S. Contento, C. Guillou, F. Reniero, and E. Sada, J. Agric. Food Chem., 1999, 47, 1013.

    Article  CAS  PubMed  Google Scholar 

  13. M. T. Osorio, A. P. Moloney, O. Schmidt, and F. J. Monahan, J. Agric. Food Chem., 2011, 59, 3285.

    Article  CAS  PubMed  Google Scholar 

  14. H. Hiraoka, S. Morita, Y. Gotou, S. Hattori, T. Ishikawa, and K. Okano, Fish. Sci., 2014, 80, 635.

    Article  CAS  Google Scholar 

  15. E. Wada, Y. Kamaya, and Y. Kurihara, J. Biosci., 1993, 78, 483.

    Article  Google Scholar 

  16. J. M. Hayes, Mineral Geochem., 2001, 43, 225.

    Article  CAS  Google Scholar 

  17. K. Ariyama, Y. Aoyama, A. Mochizuki, Y. Homura, M. Kadokura, and A. Yasui, J. Agric. Food Chem., 2007, 55, 347.

    Article  CAS  PubMed  Google Scholar 

  18. K. Ariyama, M. Kadokura, and T. Suzuki, J. AOAC Int., 2008, 97, 445.

    Article  Google Scholar 

  19. E. Furia, A. Naccarato, G. Sindona, G. Stabile, and A. Tagarelli, J. Agric. Food Chem., 2011, 59, 8450.

    Article  CAS  PubMed  Google Scholar 

  20. J. L. Banner, Earth-Sci. Rev., 2004, 65, 141.

    Article  CAS  Google Scholar 

  21. R. C. Capo, B. W. Stewart, and O. A. Chadwick, Geoderma, 1998, 82, 190.

    Article  Google Scholar 

  22. A. Kawasaki, H. Oda, and T. Hirata, Soil Sci. Plant Nutl., 2002, 48, 635.

    Article  CAS  Google Scholar 

  23. Y.-H. Yang, F.-Y. Wu, L.-W. Xie, J.-H. Yang, and Y.-B. Zhang, Spectrochim. Acta, Part B, 2011, 66, 656.

    Article  CAS  Google Scholar 

  24. Y.-S. Bong, W.-J. Shin, M. K. Gautam, Y.-J. Jeong, A.-R. Lee, C.-S. Jang, Y.-P. Lim, G.-S. Chung, and K.-S. Lee, Food Chem., 2012, 735, 2666.

    Article  Google Scholar 

  25. K. Ariyama, M. Shinozaki, and A. Kawasaki, J. Agric. Food Chem., 2012, 60, 1628.

    Article  CAS  PubMed  Google Scholar 

  26. G. Durante, C. Baschieri, L. Bertacchini, M. Cocchi, S. Sighinolfi, M. Silvestri, and A. Marchetti, Food Chem., 2013, 747, 2779.

    Article  Google Scholar 

  27. R. H. Steiger and E. Jäger, Earth Planet. Sci. Lett., 1977, 36, 359.

    Article  CAS  Google Scholar 

  28. Y. Kanda, Bone Marrow Transplant., 2013, 48, 452.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Yokoo and T. Nakano, Water Air Soil Pollut., 2001, 730, 1583.

    Article  Google Scholar 

  30. H. Kurasawa and H. Fujimaki, Kazan 2 [in Japanese with English abstract], 1977, 22, 249.

    CAS  Google Scholar 

  31. H. Kurasawa, Chigaku Zasshi [in Japanese with English abstract], 1986, 95, 30.

    Google Scholar 

  32. Y. Asahara, H. Ishiguro, T. Tanaka, K. Yamamoto, K. Mimura, M. Minami, and H. Yoshida, Appl. Geochem., 2006, 27, 419.

    Article  Google Scholar 

  33. S. Kusaka, T. Nakano, T. Yumoto, and M. Nakatsukasa, J. Archaeol. Sci., 2011, 38, 166.

    Article  Google Scholar 

  34. Y. Jomori, M. Minami, A. Ohta, M. Takeuchi, and N. Imai, Geochem. J., 2013, 47, 321.

    Article  CAS  Google Scholar 

  35. Y. Wang, Q. Guo, C. Su, and T. Ma, J. Hydrol., 2006, 328, 592.

    Article  CAS  Google Scholar 

  36. J. B. West, J. M. Hurley, F. O. Dudás, and J. R. Ehleringer, J. Forensic Sci., 2009, 54, 1261.

    Article  CAS  PubMed  Google Scholar 

  37. C. A. Fleming, in “Biogeography and Ecology in New Zealand”, ed. G. Kuschel, 1985, Springer Netherlands, 1.

  38. J. W. Cole, New Zeal. J. Geol. Geop., 1979, 22, 631.

    Article  CAS  Google Scholar 

  39. R. Millot, A. Hegan, and P. Négrel, Appl. Geochem., 2012, 27, 677.

    Article  CAS  Google Scholar 

  40. D. B. Seymour, G. R. Green, and C. R. Calver, “Geological Survey Bulletin 72”, 2006, Department of Infrastructure, Energy and Resources, Australia.

    Google Scholar 

  41. H.-C. Liu, C.-F. You, K.-F. Huang, and C.-H. Chung, Talanta, 2012, 88, 338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. S. Aoki at the Faculty of Social and Information Studies, Gunma University, for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisaaki Hiraoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraoka, H., Morita, S., Izawa, A. et al. Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content. ANAL. SCI. 32, 781–788 (2016). https://doi.org/10.2116/analsci.32.781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.781

Keywords

Navigation