Skip to main content
Log in

A Simple and Rapid Method Based on Anti-aggregation of Silver Nanoparticles for Detection of Poly(diallyldimethylammonium chloride) in Tap Water

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple and rapid method was developed for the detection of poly(diallyldimethylammonium chloride) (PDADMAC) using citrate-capped silver nanoparticles (AgNPs). Detection was based on anti-aggregation of AgNPs in phosphate buffer caused by PDADMAC. Due to its positive charges, PDADMAC was adsorbed onto AgNPs via electrostatic interaction with citrate, which resulted in the charges at the particle surfaces to become positive and caused repulsion among particles. Furthermore, long-chain PDADMAC provided steric hindrance. These two effects promoted the dispersion of AgNPs in the phosphate buffer. A change in the state of dispersion influenced the surface plasmon resonance (SPR) of AgNPs. Therefore, in this work, the concentration of PDADMAC was determined by monitoring changes in absorbance (at 396 nm) caused by SPR of AgNPs. Under optimal conditions, the calibration was linear over the range of 1 to 100 mg L−1 with a detection limit of 0.7 mg L−1. Satisfactory precision was obtained (RSD = 2.8%). This method was successfully applied to the determination of PDADMAC in tap water samples. The recoveries ranged from 86.0 - 107.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bolto and J. Gregory, Water Res., 2007, 41, 2301.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Zhou and Y. Li, Colloids Surf. A, 2004, 233, 129.

    Article  CAS  Google Scholar 

  3. L. Padhye, Y. Luzinova, M. Cho, B. Mizaikoff, J.-H. Kim, and C.-H. Huang, Environ. Sci. Technol., 2011, 45, 4353.

    Article  CAS  PubMed  Google Scholar 

  4. S.-H. Park, S. Wei, B. Mizaikoff, A. E. Taylor, C. Favero, and C.-H. Huang, Environ. Sci. Technol., 2009, 43, 1360.

    Article  CAS  PubMed  Google Scholar 

  5. B. Gumbi, J. C. Ngila, and P. G. Ndungu, Phys. Chem. Earth, 2014, 67-69, 117.

    Article  Google Scholar 

  6. I. W. Mwangi, J. C. Ngila, P. Ndungu, and T. A. M. Msagati, Water Air Soil Pollut., 2013, 224, 1638.

    Article  PubMed  PubMed Central  Google Scholar 

  7. G. Marcelo, M. P. Tarazona, and E. Saiz, Polymer, 2005, 46, 2584.

    Article  CAS  Google Scholar 

  8. N. Anik, M. Airiau, M. P. Labeau, C. T. Vuong, and H. Cottet, J. Chromatogr. A, 2012, 1219, 188.

    Article  CAS  PubMed  Google Scholar 

  9. G. Liu, H. Ren, Y. Guan, R. Dai, and C. Chai, Anal. Sci., 2015, 31, 113.

    Article  PubMed  Google Scholar 

  10. Z. Chen, Y. Hu, Q. Yang, C. Wan, Y. Tan, and H. Ma, Sens. Actuators, B, 2015, 207, 277.

    Article  CAS  Google Scholar 

  11. B. Gumbi, J. C. Ngila, and P. G. Ndungu, Anal. Methods, 2014, 6, 6963.

    Article  CAS  Google Scholar 

  12. L.-Q. Zheng, X.-D. Yu, J.-J. Xu, and H.-Y. Chen, Talanta, 2014, 118, 90.

    Article  CAS  PubMed  Google Scholar 

  13. M. R. Hormozi-Nezhad and S. Abbasi-Moayed, Talanta, 2014, 129, 227.

    Article  CAS  PubMed  Google Scholar 

  14. Y.-L. Li, Y.-M. Leng, Y.-J. Zhang, T.-H. Li, Z.-Y. Shen, and A.-G. Wu, Sens. Actuators, B, 2014, 200, 140.

    Article  CAS  Google Scholar 

  15. Z.-J. Li, X.-J. Zheng, L. Zheng, R.-P. Liang, Z.-M. Li, and J.-D. Qiu, Biosens. Bioelectron., 2015, 68, 668.

    Article  CAS  PubMed  Google Scholar 

  16. H.-H. Deng, C.-L. Wu, A.-L. Liu, G.-W. Li, W. Chen, and X.-H. Lin, Sens. Actuators, B, 2014, 191, 479.

    Article  CAS  Google Scholar 

  17. B. Haghighi and S. Bozorgzadeh, Microchem. J., 2010, 95, 192.

    Article  CAS  Google Scholar 

  18. S. Chen, H. Gao, W. Shen, C. Lu, and Q. Yuan, Sens. Actuators, B, 2014, 190, 673.

    Article  CAS  Google Scholar 

  19. K. Trieu, E. C. Heider, S. C. Brooks, F. Barbosa Jr., and A. D. Campiglia, Talanta, 2014, 128, 196.

    Article  CAS  PubMed  Google Scholar 

  20. C. Singh, G. T. Pickett, E. Zhulina, and A. C. Balazs, J. Phys. Chem. B, 1997, 101, 10614.

    Article  CAS  Google Scholar 

  21. S. S. Mortazavi and A. Farmany, J. Ind. Eng. Chem., 2014, 20, 4224.

    Article  CAS  Google Scholar 

  22. Z. Wu, H. Zhao, Y. Xue, Q. Cao, J. Yang, Y. He, X. Li, and Z. Yuan, Biosens. Bioelectron., 2011, 26, 2574.

    Article  CAS  PubMed  Google Scholar 

  23. S. K. Laliwala, V. N. Mehta, J. V. Rohit, and S. K. Kailasa, Sens. Actuators, B, 2014, 197, 254.

    Article  CAS  Google Scholar 

  24. Y. Li, M. Hong, B. Qiu, Z. Lin, Y. Chen, Z. Cai, and G. Chen, Biosens. Bioelectron., 2014, 54, 358.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund (MRG5980008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saowapak Teerasong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trisaranakul, W., Chompoosor, A., Maneeprakorn, W. et al. A Simple and Rapid Method Based on Anti-aggregation of Silver Nanoparticles for Detection of Poly(diallyldimethylammonium chloride) in Tap Water. ANAL. SCI. 32, 769–773 (2016). https://doi.org/10.2116/analsci.32.769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.769

Keywords

Navigation