Skip to main content
Log in

Detection of Organophosphorus Pesticides with Colorimetry and Computer Image Analysis

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Organophosphorus pesticides (OPs) represent a very important class of pesticides that are widely used in agriculture because of their relatively high-performance and moderate environmental persistence, hence the sensitive and specific detection of OPs is highly significant. Based on the inhibitory effect of acetylcholinesterase (AChE) induced by inhibitors, including OPs and carbamates, a colorimetric analysis was used for detection of OPs with computer image analysis of color density in CMYK (cyan, magenta, yellow and black) color space and non-linear modeling. The results showed that there was a gradually weakened trend of yellow intensity with the increase of the concentration of dichlorvos. The quantitative analysis of dichlorvos was achieved by Artificial Neural Network (ANN) modeling, and the results showed that the established model had a good predictive ability between training sets and predictive sets. Real cabbage samples containing dichlorvos were detected by colorimetry and gas chromatography (GC), respectively. The results showed that there was no significant difference between colorimetry and GC (P > 0.05). The experiments of accuracy, precision and repeatability revealed good performance for detection of OPs. AChE can also be inhibited by carbamates, and therefore this method has potential applications in real samples for OPs and carbamates because of high selectivity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fytianos, N. Raikos, G. Theodoridis, Z. Velinova, and H. Tsoukali, Chemosphere, 2006, 65, 2090.

    Article  CAS  PubMed  Google Scholar 

  2. S. A. Radford, P. Panuwet, R. E. Hunter Jr, D. B. Barr, and P. B. Ryan, J. Agric. Food Chem., 2014, 62, 7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. Davoodi, M. Hassanzadeh-Khayyat, M. A. Rezaei, and S. A. Mohajeri, Food Chem., 2014, 158, 421.

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Farajzadeh, P. Khorram, and A. A. Nabil, J. Food Compost. Anal., 2015, 96.

    Google Scholar 

  5. L. Wu, Y. Song, M. Hu, X. Xu, H. Zhang, A. Yu, Q. Ma, and Z. Wang, Talanta, 2015, 134, 366.

    Article  CAS  PubMed  Google Scholar 

  6. G. P. Dos Santos, B. F. Da Silva, S. S. Garrido, M. Mascini, and H. Yamanaka, Analyst, 2014, 139, 273.

    Article  PubMed  Google Scholar 

  7. L. London, A. Flisher, C. Wesseling, D. Mergler, and H. Kromhout, Am. J. Ind. Med., 2005, 47, 308.

    Article  CAS  PubMed  Google Scholar 

  8. J. E. Chambers, H. W. Chambers, E. C. Meek, and R. B. Pringle, Chem. Biol. Interact., 2013, 203, 135.

    Article  CAS  PubMed  Google Scholar 

  9. M. B. Colovic, D. Z. Krstic, T. D. Lazarevic-Pasti, A. M. Bondzic, and V. M. Vasic, Curr. Neuropharmacol., 2013, 11, 315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G. Mercey, T. Verdelet, J. Renou, M. Kliachyna, R. Baati, F. Nachon, L. Jean, and P. Y. Renard, Acc. Chem. Res., 2012, 45, 756.

    Article  CAS  PubMed  Google Scholar 

  11. F. Hernandez, M. Cervera, T. Portolés, J. Beltran, and E. Pitarch, Anal. Methods, 2013, 5, 5875.

    Article  CAS  Google Scholar 

  12. L. Yang, H. Li, F. Zeng, Y. Liu, R. Li, H. Chen, Y. Zhao, H. Miao, and Y. Wu, J. Agric. Food Chem., 2012, 60, 1906.

    Article  CAS  PubMed  Google Scholar 

  13. Z. L. Xu, H. Deng, X. F. Deng, J. Y. Yang, Y. M. Jiang, D. P. Zeng, F. Huang, Y. D. Shen, H. T. Lei, and H. Wang, Food Chem., 2012, 131, 1569.

    Article  CAS  Google Scholar 

  14. J. L. Armstrong, R. L. Dills, J. Yu, M. G. Yost, and R. A. Fenske, J. Environ. Sci. Health B, 2014, 49, 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Z. L. Xu, H. Wang, Y. D. Shen, M. Nichkova, H. T. Lei, R. C. Beier, W. X. Zheng, J. Y. Yang, Z. G. She, and Y. M. Sun, Analyst, 2011, 136, 2512.

    Article  CAS  PubMed  Google Scholar 

  16. X. Hua, L. Wang, G. Li, Q. Fang, M. Wang, and F. Liu, Anal. Methods, 2013, 5, 1556.

    Article  CAS  Google Scholar 

  17. A. P. Craig, A. S. Franca, and J. Irudayaraj, Annu. Rev. Food Sci. Technol., 2013, 4, 369.

    Article  CAS  PubMed  Google Scholar 

  18. N. Tiwari and A. Asthana, J. Braz. Chem. Soc., 2012, 23, 322.

    Article  CAS  Google Scholar 

  19. T. Tang, J. Deng, M. Zhang, G. Shi, and T. Zhou, Talanta, 2016, 146, 55.

    Article  CAS  PubMed  Google Scholar 

  20. M. Stanisavljevic, M. Vaculovicova, R. Kizek, and V. Adam, Electrophoresis, 2014, 35, 1929.

    Article  CAS  PubMed  Google Scholar 

  21. J. Wang, M. Yokokawa, T. Satake, and H. Suzuki, Sens. Actuators, B, 2015, 220, 859.

    Article  CAS  Google Scholar 

  22. M. Stoytcheva, V. Gochev, and Z. Velkova, Curr. Anal. Chem., 2016, 12, 37.

    Article  CAS  Google Scholar 

  23. F. E. Ahmed, Trends. Biotechnol., 2002, 20, 215.

    Article  CAS  PubMed  Google Scholar 

  24. S. Chung, T. S. Park, S. H. Park, J. Y. Kim, S. Park, D. Son, Y. M. Bae, and S. I. Cho, Sensors, 2015, 15, 18197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. De Almeida, S. Chigome, N. Torto, C. Frost, and B. Pletschke, Sens. Actuators, B, 2015, 206, 357.

    Article  Google Scholar 

  26. M. Li, S. K. Cushing, and N. Wu, Analyst, 2015, 140, 386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, and J. B. B. Rayappan, J. Food Eng., 2015, 144, 103.

    Article  CAS  Google Scholar 

  28. J. Ming-Yan and F. Liang, Chin. J. Anal. Chem., 2013, 41, 795.

    Article  Google Scholar 

  29. S. Qian and H. Lin, Anal. Chem., 2015, 87, 5395.

    Article  CAS  PubMed  Google Scholar 

  30. D. Ferri, P. Gavina, A. M. Costero, M. Parra, J.-L. Vivancos, and R. Martfnez-Mánez, Sens. Actuators, B, 2014, 202, 728.

    Article  Google Scholar 

  31. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, Biochem. Pharmacol., 1961, 7, 88.

    Article  CAS  PubMed  Google Scholar 

  32. G. Marrazza, Biosensors, 2014, 4, 301.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Y. Liu and M. Wei, Food Control, 2014, 36, 49.

    Article  Google Scholar 

  34. X. Guo, X. Zhang, Q. Cai, T. Shen, and S. Zhu, Food Control, 2013, 30, 15.

    Article  CAS  Google Scholar 

  35. M. Miyazawa, H. Watanabe, and H. Kameoka, J. Agric. Food Chem., 1997, 45, 677.

    Article  CAS  Google Scholar 

  36. K. Grudpan, S. D. Kolev, S. Lapanantnopakhun, I. D. Mckelvie, and W. Wongwilai, Talanta, 2015, 136, 84.

    Article  CAS  PubMed  Google Scholar 

  37. G. Lysiak, R. Kurlus, Z. Zydlik, and D. Walkowiak-Tomczak, Acta. Sci. Pol-Hortoru., 2014, 13, 71.

    Google Scholar 

  38. M. Pohanka, Sensors, 2015, 15, 13752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. T. Hagan and M. B. Menhaj, IEEE Trans. Neural Networks Learning Syst., 1994, 5, 989.

    Article  CAS  Google Scholar 

  40. Y. Liu, R. Niu, C. Wang, and L. Wang, Int. J. Digit. Cont. Technol. Appl., 2013, 7, 284.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation (31171684), Key Technologies R&D Program of China (2014BAD07B02), Liquor Making Biology Technology and Application of the Key Laboratory Program of Sichuan Province, China (No. NJ2014-03), Chongqing Graduate Student Research Innovation Project, China (CYB15026) and sharing fund of Chongqing University’s large equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hou, C., Lei, J. et al. Detection of Organophosphorus Pesticides with Colorimetry and Computer Image Analysis. ANAL. SCI. 32, 719–724 (2016). https://doi.org/10.2116/analsci.32.719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.719

Keywords

Navigation