Skip to main content
Log in

Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior ami memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Hoffman, C. Grashoff, and M. A. Schwartz, Nature, 2011, 475, 316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Delmas, J. Hao, and L. Rodat-Despoix, Nat. Rev. Neurosci., 2011, 12, 139.

    Article  CAS  PubMed  Google Scholar 

  3. P. Ramdya, P. Lichocki, S. Cruchet, L. Frisch, W. Tse, D. Floreano, and R. Benton, Nature, 2015, 519, 233.

    Article  CAS  PubMed  Google Scholar 

  4. O. P. Hamill and B. Martinac, Physiol. Rev., 2001, 81, 685.

    Article  CAS  PubMed  Google Scholar 

  5. T. Iskratsch, H. Wolfenson, and M. P. Sheetz, Nat. Rev. Mol. Cell Biol., 2014, 15, 825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Chalfie, Nat. Rev. Mol. Cell Biol., 2009, 10, 44.

    Article  CAS  PubMed  Google Scholar 

  7. T. Bozorgmehr, E. L. Ardiel, A. H. McEwan, and C. H. Rankin, Front Physiol., 2013, 4, 88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. P. Delmas and B. Coste, Cell, 2013, 155, 278.

    Article  CAS  PubMed  Google Scholar 

  9. S. R. Wicks and C. H. Rankin, J. Comp. Physiol. A, 1996, 179, 675.

    Article  CAS  PubMed  Google Scholar 

  10. T. A. Timbers and C. H. Rankin, Behav. Neurosci., 2011, 125, 560.

    Article  PubMed  Google Scholar 

  11. M. Chalfie, J. E. Sulston, J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, J. Neurosci., 1985, 5, 956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Sugi, Y. Ohtani, Y. Kumiya, R. Igarashi, and M. Shirakawa, Proceedings of the National Academy of Sciences, 2014, 111, 17236.

    Article  CAS  Google Scholar 

  13. N. A. Swierczek, A. C. Giles, C. H. Rankin, and R. A. Kerr, Nat. Meth., 2011, 8, 592.

    Article  CAS  Google Scholar 

  14. X. Chen and M. Chalfie, J. Neurosci., 2014, 34, 6522.

    Article  CAS  PubMed  Google Scholar 

  15. J. Hao and P. Delmas, Nat. Protocol., 2011, 6, 979.

    Article  CAS  Google Scholar 

  16. G. C. McCarter, D. B. Reichling, and J. D. Levine, Neurosci. Lett., 1999, 273, 179.

    Article  CAS  PubMed  Google Scholar 

  17. B. Coste, J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, and A. Patapoutian, Science, 2010, 330, 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C.-M. Cheng, Y.-W. Lin, R. M. Bellin, R. L. Steward, Y.-R. Cheng, P. R. LeDuc, and C.-C. Chen, Nat. Protocol., 2010, 5, 714.

    Article  CAS  Google Scholar 

  19. M. R. C. Bhattacharya, D. M. Bautista, K. Wu, H. Haeberle, E. A. Lumpkin, and D. Julius, Proceedings of the National Academy of Sciences, 2008, 105, 20015.

    Article  CAS  Google Scholar 

  20. P. Tseng, J. W. Judy, and D. Di Carlo, Nat. Meth., 2012, 9, 1113.

    Article  CAS  Google Scholar 

  21. F. Etoc, D. Lisse, Y. Bellaiche, J. Piehler, M. Coppey, and M. Dahan, Nat. Nanotechnol., 2013, 8, 193.

    Article  CAS  PubMed  Google Scholar 

  22. N. J. Sniadecki, Endocrinology, 2010, 151, 451.

    Article  CAS  PubMed  Google Scholar 

  23. H. Nikukar, S. Reid, P. M. Tsimbouri, M. O. Riehle, A. S. G. Curtis, and M. J. Dalby, ACS Nano, 2013, 7, 2758.

    Article  CAS  PubMed  Google Scholar 

  24. P. G. Childs, C. A. Boyle, G. D. Pemberton, H. Nikukar, A. S. G. Curtis, F. L. Henriquez, M. J. Dalby, and S. Reid, Acta Biomater., 2016, 34, 159.

    Article  PubMed  Google Scholar 

  25. S. Brenner, Genetics, 1974, 77, 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. K. Rose, K. R. Kaun, and C. H. Rankin, Learn Mem., 2002, 9, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  27. B. C. Petzold, S.-J. Park, E. A. Mazzochette, M. B. Goodman, and B. L. Pruitt, Integr. Biol. (Camb), 2013, 5, 853.

    Article  CAS  PubMed  Google Scholar 

  28. A. L. Eastwood, A. Sanzeni, B. C. Petzold, S.-J. Park, M. Vergassola, B. L. Pruitt, and M. B. Goodman, Proceedings of the National Academy of Sciences, 2015, 112, E6955.

    Article  CAS  Google Scholar 

  29. S. R. Wicks and C. H. Rankin, J. Neurosci., 1995, 15, 2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Caenorhabditis Genetic Center for sharing strains. T. S. and R. I. were supported by the Japan Society for the Promotion of Science. Japan Science and Technology Agency under Precursory Research for Embryonic Science and Technology (PRESTO). T. S. was supported by the Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Sugi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugi, T., Okumura, E., Kiso, K. et al. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory. ANAL. SCI. 32, 1159–1164 (2016). https://doi.org/10.2116/analsci.32.1159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1159

Keywords

Navigation