Skip to main content
Log in

Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Microfluidic devices enable the miniaturization, integration, automation, and parallelization of chemical and biochemical processes. This new technology also provides opportunity for expansion in the field of cellular pathology. Fluorescence in situ hybridization (FISH) is a well-known gene-based method to image genetic abnormalities. Development of a FISH microfluidic platform has offered the possibility of automation with significant time and cost reductions, which overcomes many drawbacks of the current protocols. Microfluidic devices are also powerful tools for single-cell analysis. Capturing the circulating tumor cells (CTCs) from blood samples is one of the most promising approaches to enable the early diagnosis of cancer. The microfluidic devices are also useful to isolate rare CTCs at high efficiency and purity. In this review, I outline recent FISH and CTC analyses using microfluidic devices, and describe their applications for the cellular diagnosis of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. K. Chan, Int. J. Surg. Pathol., 2014, 22, 12.

    Article  PubMed  Google Scholar 

  2. J. G. Bauman, J. Wiegant, P. Borst, and P. van Duijn, Exp. Cell Res., 1980, 128, 485.

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Levsky and R. H. Singer, J. Cell Sci., 2003, 116, 2833.

    Article  CAS  PubMed  Google Scholar 

  4. L. Hu, K. Ru, L. Zhang, Y. Huang, X. Zhu, H. Liu, A. Zetterberg, T. Cheng, and W. Miao, Biomark. Res., 2014, 2, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. Frithiof, C. Welinder, A. M. Larsson, L. Ryden, and K. Aaltonen, J. Transl. Med., 2015, 13, 126.

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. C. Breadmore, J. Chromatogr. A, 2012, 1221, 42.

    Article  CAS  PubMed  Google Scholar 

  7. S. Halldorsson, E. Lucumi, R. Gomez-Sjoberg, and R. M. Fleming, Biosens. Bioelectron., 2015, 63, 218.

    Article  CAS  PubMed  Google Scholar 

  8. J. P. Devadhasan, S. Kim, and J. An, J. Biomed. Sci., 2011, 18, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. P. Liu, R. J. Meagher, Y. K. Light, S. Yilmaz, R. Chakraborty, A. P. Arkin, T. C. Hazen, and A. K. Singh, Lab Chip, 2011, 11, 2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. J. Soe, F. Okkels, D. Sabourin, M. Alberti, K. Holmstrom, and M. Dufva, Lab Chip, 2011, 11, 3896.

    Article  CAS  PubMed  Google Scholar 

  11. M. Kap, F. Smedts, W. Oosterhuis, R. Winther, N. Christensen, B. Reischauer, C. Viertler, D. Groelz, K. F. Becker, K. Zatloukal, R. Langer, J. Slotta-Huspenina, K. Bodo, B. de Jong, U. Oelmuller, and P. Riegman, PLoS One, 2011, 6, e27704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Perez-Toralla, G. Mottet, E. T. Guneri, J. Champ, F. C. Bidard, J. Y. Pierga, J. Klijanienko, I. Draskovic, L. Malaquin, J. L. Viovy, and S. Descroix, Lab Chip, 2015, 15, 811.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Liu, B. Kirkland, J. Shirley, Z. Wang, P. Zhang, J. Stembridge, W. Wong, S. Takebayashi, D. M. Gilbert, S. Lenhert, and J. Guan, Lab Chip, 2013, 13, 1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. Zanardi, D. Bandiera, F. Bertolini, C. A. Corsini, G. Gregato, P. Milani, E. Barborini, and R. Carbone, Biotechniques, 2010, 49, 497.

    Article  CAS  PubMed  Google Scholar 

  15. V. J. Sieben, C. S. Debes Marun, P. M. Pilarski, G. V. Kaigala, L. M. Pilarski, and C. J. Backhouse, IET Nanobiotechnol., 2007, 1, 27.

    Article  CAS  PubMed  Google Scholar 

  16. I. Vedarethinam, P. Shah, M. Dimaki, Z. Tümer, N. Tommerup, and W. E. Svendsen, Sensors (Basel), 2010, 10, 9831.

    Article  CAS  PubMed  Google Scholar 

  17. P. Shah, I. Vedarethinam, D. Kwasny, L. Andresen, S. Skov, A. Silahtaroglu, Z. Tümer, M. Dimaki, and W. E. Svendsen, Micromachines, 2011, 2, 116.

    Article  Google Scholar 

  18. D. Kwasny, I. Vedarethinam, M. Dimaki, A. Silahtaroglu, Z. Tümer, K. Almdal, and W. E. Svendsen, Micromachines, 2014, 5, 158.

    Article  Google Scholar 

  19. V. J. Sieben, C. S. Debes-Marun, L. M. Pilarski, and C. J. Backhouse, Lab Chip, 2008, 8, 2151.

    Article  CAS  PubMed  Google Scholar 

  20. C. H. Tai, C. L. Ho, Y. L. Chen, W. Chen, and G. B. Lee, Microfluid. Nanofluid., 2013, 15, 745.

    Article  CAS  Google Scholar 

  21. A. Kuroda, Y. Ishigaki, M. Nilsson, and K. Sato, Anal. Sci., 2014, 30, 1107.

    Article  CAS  PubMed  Google Scholar 

  22. C. Larsson, J. Koch, A. Nygren, G. Janssen, A. K. Raap, U. Landegren, and M. Nilsson, Nat. Methods, 2004, 1, 227.

    Article  CAS  PubMed  Google Scholar 

  23. A. I. Yaroslavsky and I. V. Smolina, Chem. Biol., 2013, 20, 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. I. Grundberg, S. Kiflemariam, M. Mignardi, J. Imgenberg-Kreuz, K. Edlund, P. Micke, M. Sundstrom, T. Sjoblom, J. Botling, and M. Nilsson, Oncotarget, 2013, 4, 2407.

    Article  PubMed  PubMed Central  Google Scholar 

  25. R. Ke, M. Mignardi, A. Pacureanu, J. Svedlund, J. Botling, C. Wahlby, and M. Nilsson, Nat. Methods, 2013, 10, 857.

    Article  CAS  PubMed  Google Scholar 

  26. N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stepansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W. R. McCombie, J. Hicks, and M. Wigler, Nature, 2011, 472, 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Wang, J. Waters, M. L. Leung, A. Unruh, W. Roh, X. Shi, K. Chen, P. Scheet, S. Vattathil, H. Liang, A. Multani, H. Zhang, R. Zhao, F. Michor, F. Meric-Bernstam, and N. E. Navin, Nature, 2014, 512, 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P. H. Huang, C. I. Truica, J. J. Drabick, W. S. El-Deiry, M. Dao, S. Suresh, and T. J. Huang, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 4970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, and D. E. Ingber, Lab Chip, 2012, 12, 2175.

    Article  CAS  PubMed  Google Scholar 

  30. K. Hoshino, Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, Lab Chip, 2011, 11, 3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. M. Karabacak, P. S. Spuhler, F. Fachin, E. J. Lim, V. Pai, E. Ozkumur, J. M. Martel, N. Kojic, K. Smith, P. I. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T. A. Barber, S. L. Stott, S. Maheswaran, R. Kapur, D. A. Haber, and M. Toner, Nat. Protoc., 2014, 9, 694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, Nature, 2007, 450, 1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Wang, K. Liu, J. Liu, Z. T. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. Shen, and H. R. Tseng, Angew. Chem., Int. Ed. Engl., 2011, 50, 3084.

    Article  CAS  PubMed  Google Scholar 

  34. W. Sheng, O. O. Ogunwobi, T. Chen, J. Zhang, T. J. George, C. Liu, and Z. H. Fan, Lab Chip, 2014, 14, 89.

    Article  CAS  PubMed  Google Scholar 

  35. L. Dieguez, M. A. Winter, K. J. Pocock, K. E. Bremmell, and B. Thierry, Analyst, 2015, 140, 3565.

    Article  CAS  PubMed  Google Scholar 

  36. C. Alix-Panabieres and K. Pantel, Nat. Rev. Cancer, 2014, 14, 623.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NEDO Industrial Technology Research Assistance Project, Grant-in-Aid for Scientific Research (JSPS, KAKENHI; Grant Number 15K15199), and Shimadzu Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kae Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells. ANAL. SCI. 31, 867–873 (2015). https://doi.org/10.2116/analsci.31.867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.867

Keywords

Navigation