Skip to main content

Advertisement

Log in

A Miniaturized Stepwise Injection Spectrophotometric Analyzer

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel micro-stepwise injection analyzer (μSWIA) has been developed for the automation and miniaturization of spectrophotometric analysis. The main unit of this device is a mixing chamber (MC) connected to the atmosphere. This part of the μSWIA provides rapid and effective homogenization of the reaction mixture components and completion of the reaction by means of gas bubbling. The μSWIA contained a rectangular labyrinth channel designed in way allowing one to eliminate bubbles by moving a solution from the MC to an optical channel. The light-emitting diode (LED) was used as a light emitter and the analytical signal was measured by a portable spectrophotometer. Fluid movement was attained via the use of a computer-controlled syringe pump. The μSWIA was successfully used for the spectrophotometric determination of cysteine in biologically active supplements and fodder by using 18-molybdo-2-phosphate heteropoly anion (18-MPA) as the reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, Science, 1993, 267, 895.

    Article  Google Scholar 

  2. A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators, B, 1990, 7, 244.

    Article  Google Scholar 

  3. A. Marx, J. C. Fettinger and E. Verpoorte, H. Liidi, H. M. Widmer, and D. J. Harrison, TrAC, Trends Anal. Chem., 1991, 70, 84.

    Google Scholar 

  4. H. Liidi, M. B. Garn, S. D. Haemmerli, A. Manz, and H. M. Widmer, J. Biotechnol., 1992, 25, 75.

    Article  Google Scholar 

  5. A. Gaiuszka, Z. Migaszewski, and J. Namiesnik, TrAC, Trends Anal. Chem., 2013, 50, 78.

    Article  Google Scholar 

  6. S. Xue, K. Uchiyama, and H.-F. Li, J. Environ. Sci., 2012, 24, 564.

    Article  CAS  Google Scholar 

  7. J. Ruzicka, Analyst, 2000, 125, 1053.

    Article  CAS  Google Scholar 

  8. M. Miro and E. H. Hansen, Anal. Chim. Acta, 2007, 600, 46.

    Article  CAS  PubMed  Google Scholar 

  9. P. Phansi, C. Henrfquez, E. Palacio, D. Nacapricha, and V. Cerdá, Talanta, 2014, 119, 68.

    Article  CAS  PubMed  Google Scholar 

  10. F. Z. Abouhiat, C. Henrfquez, B. Horstkotte, F. El Yousfi, and V. Cerdá, Talanta, 2013, 108, 92.

    Article  CAS  PubMed  Google Scholar 

  11. S. Guo and T. Imato, J. Flow Injection Anal., 2013, 30, 29.

    CAS  Google Scholar 

  12. S. Guo and T. Imato, J. Flow Injection Anal., 2013, 30, 21.

    Google Scholar 

  13. P. H. G. D. Diniz, L. F. de Almeida, D. P. Harding, and M. C. U. de Araujo, TrAC, Trends Anal. Chem., 2012, 35, 39.

    Article  CAS  Google Scholar 

  14. G. Marshall, D. Wolcott, and D. Olson, Anal. Chim. Acta, 2003, 499, 29.

    Article  CAS  Google Scholar 

  15. A. V. Bulatov, A. V. Petrova, A. B. Vishnikin, A. L. Moskvin, and L. N. Moskvin, Talanta, 2012, 96, 62.

    Article  CAS  PubMed  Google Scholar 

  16. A. V. Bulatov, I. I. Timofeeva, and A. L. Moskvin, J. Flow Injection Anal., 2013, 30, 51.

    CAS  Google Scholar 

  17. A. Bulatov, M. Soloviev, A. Petrova, A. Moskvin, and L. Moskvin, J. Flow Injection Anal., 2010, 27, 158.

    CAS  Google Scholar 

  18. A. V. Bulatov, A. V. Petrova, A. B. Vishnikin, and L. N. Moskvin, Microchem. J., 2013, 110, 368.

    Article  Google Scholar 

  19. S. S. Monte-Filho, M. B. Lima, S. I. E. Andrade, D. P. Harding, Y. N. M. Fagundes, S. R. B. Santos, S. G. Lemos, and M. C. U. Araújo, Talanta, 2011, 86, 208.

    Article  PubMed  Google Scholar 

  20. H. Becker and L. E. Locassio, Talanta, 2002, 56, 267.

    Article  CAS  PubMed  Google Scholar 

  21. D. F. Pozo-Ayuso, M. Castano-Alvarez, A. Fernandez-la-Villa, M. Garcfa-Granda, M. T. Fernández-Abedul, A. Costa-Garcfa, and J. Rodrfguez-Garcfa, J. Chromatogr. A, 2008, 1180, 193.

    Article  CAS  PubMed  Google Scholar 

  22. H. Zhai, J. Li, Z. Chen, Z. Su, Z. Liu, and X. Yu, Microchem. J., 2014, 114, 223.

    Article  CAS  Google Scholar 

  23. J. S. Mecomber, D. Hurd, and P. A. Limbach, Int. J. Mach. Tools Manu., 2005, 45, 1542.

    Article  Google Scholar 

  24. A. O. Rudenko, L. A. Karcova, and S. I. Snarski, Sorption Chromatogr. Processes, 2012, 10, 233.

    Google Scholar 

  25. State Standard of the Russian Federation No. 13496.22-90. Fodders, mixed fodders and mixed fodder raw materials. Method for the determination of cysteine and methionine.

Download references

Acknowledgments

We gratefully acknowledge financial support of the Russian Foundation for Basic Research (Grant No. 13-03-00031). This work was supported by the Ministry of Education and Science of the Russian Federation in form of Scholarship of the Russian President (Order No. 539). Scientific research was performed at the Center for chemical analysis and materials research of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Petrova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A., Bulatov, A., Vishnikin, A. et al. A Miniaturized Stepwise Injection Spectrophotometric Analyzer. ANAL. SCI. 31, 529–533 (2015). https://doi.org/10.2116/analsci.31.529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.529

Keywords

Navigation