Skip to main content
Log in

Photoluminescent Detection of Nitrite with Carbon Nanodots Prepared by Microwave-assisted Synthesis

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A photoluminescent detection method for nitrite with high selectivity and sensitivity using carbon nanodots (CNDs) is demonstrated. The selectivity of nitrite is accomplished by a highly specific diazotization reaction between nitrite and p-phenylenediamine (p-PDA). In the presence of nitrite, p-PDA easily reacts to form the diazonium cation in the acidic aqueous solution. By alkalization of the reaction mixture, diazonium cation of p-PDA was converted to an aryl radical to form aggregated CNDs, which causes the change in the photoluminescent intensity of CNDs. In the present method, nitrite can be selectively detected down to 1 μM over several anions, such as nitrate, perchlorate, sulfate, fluoride, chloride, and bromide at mM levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Pisanic II, Y. Zhang, and T. H. Wang, Analyst, 2014, 139, 2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, Nano Lett., 2005, 5, 113.

    Article  CAS  PubMed  Google Scholar 

  3. J. Xie, Y. Zheng, and J. Y. Ying, J. Am. Chem. Soc., 2009, 131, 888.

    Article  CAS  PubMed  Google Scholar 

  4. S. N. Baker and G. A. Baker, Angew. Chem., Int. Ed., 2010, 49, 6726.

    Article  CAS  Google Scholar 

  5. Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, and Y. Liu, Chem. Commun., 2012, 48, 380.

    Article  CAS  Google Scholar 

  6. A. Safavi, F. Sedaghati, H. Shahbaazi, and E. Farjami, RSC Adv., 2012, 2, 7367.

    Article  CAS  Google Scholar 

  7. W. Shi, X. Li, and H. Ma, Angew. Chem., 2012, 123, 6538.

    Article  Google Scholar 

  8. Z. Lin, W. Xue, H. Chen, and J.-M. Lin, Chem. Commun., 2012, 48, 1051.

    Article  Google Scholar 

  9. H. Dai, C. Yang, Y. Tong, G. Xu, X. Ma, Y. Lin, and G. Chen, Chem. Commun., 2012, 48, 3055.

    Article  CAS  Google Scholar 

  10. P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, and H.-T. Chang, Green Chem., 2012, 14, 917.

    Article  CAS  Google Scholar 

  11. A. Salinas-Castillo, M. Ariza-Avidad, C. Pritz, M. Camprubîi-Robles, B. Fernandez, M. J. Ruedas-Rama, A. Megia-Fernández, A. Lapresta-Fernández, F. Santoyo-Gonzalez, A. Schrott-Fischer, and L. F. Capitan-Vallvey, Chem. Commun., 2013, 49, 1103.

    Article  CAS  Google Scholar 

  12. H. X. Zhao, L. Q. Liu, Z. D. Liu, Y. Wang, X. J. Zhao, and C. Z. Huang, Chem. Commun., 2011, 47, 2604.

    Article  CAS  Google Scholar 

  13. S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, and C. R. Park, Carbon, 2012, 50, 3.

    Article  CAS  Google Scholar 

  14. A. Hirsch, J. M. Englert, and F. Hauke, Acc. Chem. Res., 2013, 46, 87.

    Article  CAS  PubMed  Google Scholar 

  15. G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991.

    Article  CAS  Google Scholar 

  16. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118.

    Google Scholar 

  17. S. Dai and K. C. Tam, J. Phys. Chem. B, 2001, 705, 10759.

    Article  Google Scholar 

  18. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 726, 12736.

    Article  Google Scholar 

  19. H. Liu, T. Ye, and C. Mao, Angew. Chem., Int. Ed., 2007, 46, 6473.

    Article  CAS  Google Scholar 

  20. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.Y. Xie, J. Am. Chem. Soc., 2006, 728, 7756.

    Article  Google Scholar 

  21. P.-C. Hsu and H.-T. Chang, Chem. Commun., 2012, 48, 3984.

    Article  CAS  Google Scholar 

  22. P. Nagaraja, H. S. Yathirajan, and R. A. Vasantha, Anal. Biochem., 2003, 372, 157.

    Article  Google Scholar 

  23. D. F. Kuemmel and M. G. Mellon, Anal. Chem., 1956, 28, 1674.

    Article  CAS  Google Scholar 

  24. F. Barrière and A. J. Downard, J. Solid State Electrochem., 2008, 72, 1231.

    Article  Google Scholar 

  25. M. Pandurangappa, N. S. Lawrence, and R. G. Compton, Analyst, 2002, 727, 1568.

    Article  Google Scholar 

  26. N. Griffete, F. Herbst, J. Pinson, S. Ammar, and C. Mangeney, J. Am. Chem. Soc., 2011, 733, 1646.

    Article  Google Scholar 

  27. P. Shen and Y. Xia, Anal. Chem., 2014, 86, 5323.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by KAKENHI Grant No. 25810083 from the Japan society for the Promotion of Sciences (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kotaro Morita or Hisanori Imura.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, K., Kobayashi, A., Nagatani, H. et al. Photoluminescent Detection of Nitrite with Carbon Nanodots Prepared by Microwave-assisted Synthesis. ANAL. SCI. 31, 481–485 (2015). https://doi.org/10.2116/analsci.31.481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.481

Keywords

Navigation