Skip to main content
Log in

The Use of a Milli-whistle as a Detector in Gas Analysis by Gas Chromatography

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This mini-review introduces a general understanding of the use of a milli-whistle as a gas chromatography (GC) detector in gas analysis, including our research on the methodology and theory associated with a number of different related applications. The milli-whistle is connected to the outlet of a GC capillary, and when the eluted gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The sound wave can be picked up by a microphone or an accelerometer, and after a fast Fourier transform, the online data obtained for frequency-change vs. retention time constitute a new method for detecting gases. The first part of this review discusses the fundamentals of the milli-whistle. Some modifications are also discussed, including various types of whistles and an attempt to maximize the sensitivity and stability of the method. The second part then focuses on several practical applications, including an analysis of hydrogen released from ammonia borane, inorganic gases produced from fireworks, the CO2/O2 ratio from expired human breath and a purity test for alcohols. These studies show that the GC-whistle method has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 References

  1. Y.-C. Liu, K.-C. Fan, C.-L. Chu, C. A. Werner, and G. Jäger, Meas. Sci. Technol., 2008, 19, 084012.

    Article  CAS  Google Scholar 

  2. T. Kawasaki, T. Mochida, J. Katada, and Y. Okahata, Anal. Sci., 2009, 25, 1069.

    Article  CAS  PubMed  Google Scholar 

  3. S. A. Beres, C. D. Halfmann, E. D. Katz, and R. P. W. Scott, Analyst, 1987, 112, 91.

    Article  CAS  Google Scholar 

  4. A. Machino, H. Sugimoto, and D. Terasaki, Anal. Sci., 1991, 7, 979.

    Article  CAS  Google Scholar 

  5. T. Krawczynski vel Krawczyk, and M. Trojanowicz, Anal. Sci., 1992, 8, 329.

    Article  CAS  Google Scholar 

  6. K. Toda, T. Shimizu, and I. Sanemasa, Anal. Sci., 1995, 11, 317.

    Article  CAS  Google Scholar 

  7. W. Hong, S. Hayakawa, K. Maeda, S. Fukuda, M. Yanokura, M. Aratani, K. Kimura, Y. Gohshi, and I. Tanihata, Anal. Sci., 1997, 13, 365.

    Article  CAS  Google Scholar 

  8. K. Toda, S. Hashiguchi, S. Oguni, and I. Sanemasa, Anal. Sci., 1997, 13, 981.

    Article  CAS  Google Scholar 

  9. Y. Yang, X.-X. Zhang, and T. Korenaga, Anal. Sci., 1997, 13, 397.

    Article  CAS  Google Scholar 

  10. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, Nano Lett., 2003, 3, 929.

    Article  CAS  Google Scholar 

  11. X. Chen, Y. Oro, K. Tanaka, N. Takenaka, and H. Bandow, Anal. Sci., 2004, 20, 1019.

    Article  CAS  PubMed  Google Scholar 

  12. P. Sritharathikhun, M. Oshima, Y. Wei, J. Simon, and S. Motomizu, Anal. Sci., 2004, 20, 113.

    Article  CAS  PubMed  Google Scholar 

  13. C.-S. Chu and Y.-L. Lo, Sens. Actuators, B, 2009, 143, 205.

    Article  CAS  Google Scholar 

  14. S. A. M. Marzouk, M. H. Al-Marzouqi, and S. M. S. M. Baomran, Microchem. J., 2010, 95, 207.

    Article  CAS  Google Scholar 

  15. W.-J. Ju, L.-M. Fu, R.-J. Yang, and C.-L. Lee, Lab Chip, 2012, 12, 622.

    Article  CAS  PubMed  Google Scholar 

  16. T. Nakaya, K. Kobayashi, T. Akagi, K. Kimura, and H. Tai, Anal. Sci., 2000, 16, 1211.

    Article  CAS  Google Scholar 

  17. K. Nose, Y. Nunome, T. Kondo, S. Araki, and T. Tsuda, Anal. Sci., 2005, 21, 625.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Huang and F. Wu, Anal. Sci., 2006, 22, 965.

    Article  CAS  PubMed  Google Scholar 

  19. R. Maleki, K. Farhadi, and A. A. Matin, Anal. Sci., 2006, 22, 1253.

    Article  CAS  PubMed  Google Scholar 

  20. J. Hoshi, M. Higuchi, Y. Sasaki, and T. Korenaga, Anal. Sci., 2007, 23, 987.

    Article  CAS  PubMed  Google Scholar 

  21. I. Ueta, Y. Saito, M. Hosoe, M. Okamoto, H. Ohkita, S. Shirai, H. Tamura, and K. Jinno, J. Chromatogr., B, 2009, 877, 2551.

    Article  CAS  Google Scholar 

  22. L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, Sens. Lett., 2010, 8, 709.

    Article  CAS  Google Scholar 

  23. V. Tihay, P. Gillard, and D. Blanc, J. Hazard. Mater., 2012, 209, 372.

    Article  PubMed  CAS  Google Scholar 

  24. K. Yamai, T. Funada, T. Ohkuwa, H. Itoh, and T. Tsuda, Anal. Sci., 2012, 28, 511.

    Article  CAS  PubMed  Google Scholar 

  25. C.-H. Lin, C.-H. Lin, Y.-S. Li, and Y.-S. He, Anal. Chem., 2010, 82, 7467.

    Article  CAS  PubMed  Google Scholar 

  26. S. Bourne, A. M. Haefner, K. L. Norton, and P. R. Griffiths, Anal. Chem., 1990, 62, 2448.

    Article  CAS  Google Scholar 

  27. Y. Nagasawa, H. Ishida, and A. Ishitani, Anal. Sci., 1991, 7, 1013.

    Article  CAS  Google Scholar 

  28. K. Kitagawa and Y. Shimazaki, Anal. Sci., 1993, 9, 663.

    Article  CAS  Google Scholar 

  29. I. J. Amster, J. Mass Spectrom., 1996, 31, 1325.

    Article  CAS  Google Scholar 

  30. M. W. Senko, C. L. Hendrickson, M. R. Emmett, S. D.-H. Shi, and A. G. Marshall, J. Am. Soc. Mass Spectrom., 1997, 8, 970.

    Article  CAS  Google Scholar 

  31. M. Sadeghi, M. Zeeb, and M. R. Kalaee, Anal. Sci., 2010, 26, 575.

    Article  CAS  PubMed  Google Scholar 

  32. Y.-S. He, K.-F. Chen, C.-H. Lin, M.-T. Lin, C.-C. Chen, and C.-H. Lin, Anal. Chem., 2013, 85, 3303.

    Article  CAS  PubMed  Google Scholar 

  33. K.-F. Chen, H.-H. Wu, C.-H. Lin, and C.-H. Lin, J. Chromatogr., A., 2013, 1305, 230.

    Article  CAS  Google Scholar 

  34. W. E. Benton, Proc. Phys. Soc., 1925, 38, 109.

    Google Scholar 

  35. E. G. Richardson, Proc. Phys. Soc., 1931, 43, 394.

    Article  Google Scholar 

  36. G. B. Brown, Proc. Phys. Soc., 1937, 49, 493.

    Article  Google Scholar 

  37. S. G. Shore and R. W. Parry, J. Am. Chem. Soc., 1955, 77, 6084.

    Article  CAS  Google Scholar 

  38. S. G. Shore and R. W. Parry, J. Am. Chem. Soc., 1958, 80, 8.

    Article  CAS  Google Scholar 

  39. F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Rößler, and G. Leitner, Thermochim. Acta, 2002, 391, 159.

    Article  CAS  Google Scholar 

  40. A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski, and T. Autrey, Angew. Chem., Int. Ed., 2005, 44, 3578.

    Article  CAS  Google Scholar 

  41. L. Schlapbach and A. Züttel, Nature, 2001, 414, 353.

    Article  CAS  PubMed  Google Scholar 

  42. J. A. Kline, M. M. Hogg, D. R. Mauerhan, and S. L. Frick, Clin. Physiol. Funct. Imaging, 2008, 28, 161.

    Article  PubMed  Google Scholar 

  43. J. A. Kline, M. M. Hogg, D. M. Courtney, C. D. Miller, A. E. Jones, H. A. Smithline, N. Klekowski, and R. Lanier, Am. J. Respir. Crit. Care Med., 2010, 182, 669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Huang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., He, YS., Lin, CH. et al. The Use of a Milli-whistle as a Detector in Gas Analysis by Gas Chromatography. ANAL. SCI. 30, 183–191 (2014). https://doi.org/10.2116/analsci.30.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.183

Keywords

Navigation