Skip to main content
Log in

Preconcentration of Total Mercury from River Water by Anion Exchange Mechanism

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple and cheap analytical technique was developed for the measurement of total mercury in river water samples using inductively coupled plasma-mass spectrometry (ICP-MS). It is based on the direct complexation of mercury ions using iodide and a cationic surfactant in water for its subsequent solid-phase extraction. Mercury ions are retained on the silica phase as ion pairs in the presence of iodide ions and dodecyltrimethylammonium bromide. Parameters having influential influence on the retention of Hg(II) were investigated: sample flowrate, eluent type, sample volume, iodide and surfactant concentrations. The retained mercury ions are stripped off from silica phase using 10 mL of 8 mol L–1 HNO3 and quantified by ICP-MS. An enrichment factor of 50 was achieved with a maximum adsorption capacity of 718 µg Hg(II) g-1. The limit of detection of Hg(II) was 8 pg mL-1. The developed method was applied for the determination of total mercury in river and tap-water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Jia, D. Gong, Y. Han, C. Wei, T. Duan, and H. Chen, Talanta, 2012, 88, 724.

    Article  CAS  PubMed  Google Scholar 

  2. S. R. Segade and J. F. Tyson, Talanta, 2007, 71, 1696.

    Article  CAS  PubMed  Google Scholar 

  3. Z. Fan, Talanta, 2006, 70, 1164.

    Article  CAS  PubMed  Google Scholar 

  4. J. Fan, C. Wu, Y. Wei, C. Peng, and P. Peng, J. Hazard. Mater., 2007, 145, 323.

    Article  CAS  PubMed  Google Scholar 

  5. A. M. H. Shabani, S. Dadfarnia, F. Motavaselian, and S. Ahmadi, J. Hazard. Mater., 2009, 162, 373.

    Article  Google Scholar 

  6. N. Dalali and S. Nakisa, Int. J. Chem. Environ. Eng., 2012, 3, 1.

    Google Scholar 

  7. F. M. Fabrega and M. B. Mansur, Hydrometallurgy, 2007, 87, 83.

    Article  CAS  Google Scholar 

  8. R. Caban and T. Chapman, AIChE J., 1972b, 18, 904.

  9. X. Chai, X. Chang, Z. Hu, Q. He, Z. Tu, and Z. Li, Talanta, 2010, 82, 1791.

    Article  CAS  PubMed  Google Scholar 

  10. A. E. Martell and L. G. Sillen, “Stability Constants of Metal Ion Complexes”, 2nd ed., 1964, Chemical Society, London.

  11. L. Tavlarides, J. Bae, and C. Lee, Sep. Sci. Technol., 1987, 22, 581.

    Article  CAS  Google Scholar 

  12. R. Kumbasar, J. Membr. Sci., 2008, 325, 460.

    Article  CAS  Google Scholar 

  13. M. Shamsipur, A. R. Ghiasvand, and Y. Yamini, Anal. Chem., 1999, 71, 4892.

    Article  CAS  PubMed  Google Scholar 

  14. A. Benhamou, M. Baudu, Z. Derriche, and J. P. Basly, J. Hazard. Mater., 2009, 171, 1001.

    Article  CAS  PubMed  Google Scholar 

  15. P. Wu and Y. S. Zhou, J. Hazard. Mater., 2009, 168, 674.

    Article  CAS  PubMed  Google Scholar 

  16. G. L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712A.

    Article  CAS  Google Scholar 

  17. M. Soleimani, M. S. Mahmodi, A. Morsali, A. Khani, and M. G. Afshar, J. Hazard. Mater., 2011, 189, 371.

    Article  CAS  PubMed  Google Scholar 

  18. O. Yayayuruk, E. Henden, and N. Bicak, Anal. Sci., 2011, 127, 833.

    Article  Google Scholar 

  19. A. Moghimi and M. J. Poursharifi, World Appl. Sci. J., 2011, 12, 624.

    Google Scholar 

  20. W. Qu, Y. Zhai, S. Meng, Y. Fan, and Q. Zhao, Mircrochim. Acta, 2008, 163, 277.

    Article  CAS  Google Scholar 

  21. M. V. B. Krishna, D. Karunasagar, S. V. Rao, and J. Arunachalam, Talanta, 2005, 68, 329.

    Article  CAS  Google Scholar 

  22. R. M. Blanco, M. T. Villanueva, J. E. S. Uria, and A. Sanz-Medel, Anal. Chim. Acta, 2000, 419, 137.

    Article  CAS  Google Scholar 

  23. E. K. Mladenova, I. G. Dakova, D. L. Tsalev, and I. B. Karadjova, Cent. Eur. J. Chem., 2012, 10, 1175.

    CAS  Google Scholar 

  24. E. M. Soliman, M. B. Saleh, and S. A. Ahmed, Talanta, 2006, 69, 55.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Yaminia, N. Alizadeha, and M. Shamsipur, Anal. Chim. Acta, 1997, 355, 69.

    Article  Google Scholar 

  26. M. E. Mahmoud, M. M. Osman, and M. E. Amer, Anal. Chim. Acta, 2000, 415, 33.

    Article  CAS  Google Scholar 

  27. W. X. Ma, F. Liu, K. A. Li, W. Chen, and S. Y. Tong, Anal. Chim. Acta, 2000, 416, 191.

    Article  CAS  Google Scholar 

  28. Y. Guo, B. Din, Y. Liu, X. Chang, S. Meng, and M. Tian, Anal. Chim. Acta, 2004, 504, 319.

    Article  CAS  Google Scholar 

  29. N. Pourreza, H. Parham, A. R. Kiasat, K. Ghanemi, and N. Abdollahi, Talanta, 2009, 78, 1293.

    Article  CAS  PubMed  Google Scholar 

  30. N. Pourreza and K. Ghanemi, J. Hazard. Mater., 2009, 161, 982.

    Article  CAS  PubMed  Google Scholar 

  31. D. M. Sanchez, R. Martın, R. Morante, J. Marın, and M. L. Munuera, Talanta, 2000, 52, 671.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baghdad Ouddane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daye, M., Ouddane, B., Halwani, J. et al. Preconcentration of Total Mercury from River Water by Anion Exchange Mechanism. ANAL. SCI. 29, 955–961 (2013). https://doi.org/10.2116/analsci.29.955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.955

Keywords

Navigation