Skip to main content

Advertisement

Log in

Determination of Lead by Square Wave Anodic Stripping Voltammetry Using an Electrochemical Sensor

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel electrochemical assay for lead (Pb2+) detection was developed in this study, involving the use of screen-printed electrodes (SPEs). The sensor was used with selected supporting electrolytes in conjunction with square wave anodic stripping voltammetry (ASV) to study the redox characteristics of lead. Good response currents were obtained using a supporting electrolyte comprising acetate buffer pH 5.0 with 0.5 mol L−1 NH4Cl. Without a deposition process, the anodic peaks for higher lead concentrations (ranging from 0.7 to 10 mg L−1) were sharp and symmetrical on the bare electrode surface. Optimal ASV conditions were obtained with a well-defined stripping peak for 200 μL deposition solution volumes, a deposition potential of –1.2 V for Ag/AgCl, and a deposition time of either 300 or 400 s. Under optimal conditions, a calibration curve ranging from 6.25 to 500 μg L−1 was obtained for lead determination. Furthermore, the performance of a Hg-free sensor for Pb2+ determination was compared with that of a Hg-coated electrode, and the detection limits were approximately 0.9 - 1.5 μg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jang, Y. W. Seo, and P. L. Bishop, Environ. Pollut., 2005, 133, 117.

    Article  CAS  PubMed  Google Scholar 

  2. W. Jung, A. Jang, P. L. Bishop, and C. H. Ahn, Sens. Actuators, B, 2011, 155, 145.

    Article  CAS  Google Scholar 

  3. K. Ndung’u, R. P. Franks, K. W. Bruland, and A. R. Flegal, Anal. Chim. Acta, 2003, 481, 127.

    Article  Google Scholar 

  4. L. A. Pereira, I. G. Amorimb, and J. B. B. Silva, Talanta, 2004, 64, 395.

    Article  CAS  PubMed  Google Scholar 

  5. J. Charbucinski, J. Malos, A. Rojc, and C. Smith, Appl. Radiat. Isot., 2003, 59, 197.

    Article  CAS  PubMed  Google Scholar 

  6. D. Dragoe, N. Spătaru, R. Kawasaki, A. Manivannan, T. Spătaru, D. A. Tryk, and A. Fujishima, Electrochim. Acta, 2006, 51, 2437.

    Article  CAS  Google Scholar 

  7. E. P. Gil and P. Ostapczuk, Anal. Chem., 1993, 346, 957.

    Article  CAS  Google Scholar 

  8. J. Wang, S. B. Hocevar, R. P. Deo, and B. Ogorevc, Electrochem. Commun., 2001, 3, 352.

    Article  CAS  Google Scholar 

  9. C. M. A. Brett, A. M. O. Brett, and L. Tugulea, Anal. Chim. Acta, 1996, 322, 151.

    Article  CAS  Google Scholar 

  10. E. A. McGaw and G. M. Swain, Anal. Chim. Acta, 2006, 575, 180.

    Article  CAS  PubMed  Google Scholar 

  11. I. Yanagimachi, N. Nashida, K. Iwasa, and H. Suzuki, Sci. Technol. Adv. Mater., 2005, 6, 671.

    Article  CAS  Google Scholar 

  12. X. Zhu, C. Gao, J. W. Choi, P. L. Bishop, and C. H. Ahn, Lab Chip, 2005, 5, 212.

    Article  CAS  PubMed  Google Scholar 

  13. R. J. Reay, A. F. Flannery, C. W. Storment, S. P. Kounaves, and G. T. A. Kovacs, Sens. Actuators, B, 1996, 34, 450.

    Article  CAS  Google Scholar 

  14. T. Navrátil and M. Kopanica, Crit. Rev. Anal. Chem., 2002, 32, 153.

    Article  Google Scholar 

  15. T. Navrátil, S. Sebková, and M. Kopanica, Anal. Bioanal. Chem., 2004, 379, 294.

    Article  PubMed  Google Scholar 

  16. G.-U. Flechsig, O. Korbout, S. B. Hocevar, S. Thongngamdee, B. Ogorevc, P. Grundler, and J. Wang, Electroanalysis, 2002, 14, 192.

    Article  CAS  Google Scholar 

  17. R. Pauliukaite, S. B. Hocevar, B. Ogorevc, and J. Wang, Electroanalysis, 2004, 16, 719.

    Article  CAS  Google Scholar 

  18. J. Kruusma, C. E. Banks, and R. G. Compton, Anal. bioanal. Chem., 2004, 379, 700.

    Article  CAS  PubMed  Google Scholar 

  19. S. Legeai, K. Soropogui, M. Cretinon, O. Vittori, A. H. D. Oliveira, F. Barbier, and M.-F. Grenier-Loustalot, Anal. Bioanal. Chem., 2005, 383, 839.

    Article  CAS  PubMed  Google Scholar 

  20. S. Legeai and O. Vittori, Anal. Chim. Acta, 2006, 560, 184.

    Article  CAS  Google Scholar 

  21. J. P. Hart and S. A. Wring, TrAC, Trends Anal. Chem., 1997, 16, 89.

    Article  CAS  Google Scholar 

  22. J.-Y. Choi, K. Seo, S.-R. Cho, J.-R. Oh, S.-H. Kahng, and J. Park, Anal. Chim. Acta, 2001, 443, 241.

    Article  CAS  Google Scholar 

  23. P. Masawat, S. Liawruangrath, and J. M. Slater, Sens. Actuators, B, 2003, 91, 52.

    Article  CAS  Google Scholar 

  24. Z. Es’haghi, M. Khalili, A. Khazaeifar, and G. H. Rounaghi, Electrochim. Acta, 2011, 56, 3139.

    Article  Google Scholar 

  25. I. Ion and A. C. Ion, Sens. Actuators, B, 2012, in press.

  26. J. Dou, F. Fan, and A. Ding, J. Environ. Sci., 2012, 24, 1.

    Article  Google Scholar 

  27. X. Xie, D. Stüben, Z. Berner, J. Albers, R. Hintsche, and E. Jantzen, Sens. Actuators, B, 2004, 97, 168.

    Article  CAS  Google Scholar 

  28. G.-J. Lee, H.-M. Lee, and C.-K. Rhee, Electrochem. Commun., 2007, 9, 2514.

    Article  CAS  Google Scholar 

  29. R. P. Baldwin, K. Ravichandran, and R. K. Johnson, J. Chem. Educ., 1984, 61, 820.

    Article  CAS  Google Scholar 

  30. Y. Xiao, C. Guo, C. M. Li, Y. Li, J. Zhang, R. Xue, and S. Zhang, Anal. Biochem., 2007, 371, 229.

    Article  CAS  PubMed  Google Scholar 

  31. K. C. Armstrong, C. E. Tatum, R. N. Dansby-Sparks, J. Q. Chambers, and Z.-L. Xue, Talanta, 2010, 82, 675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Crew, D. C. Cowell, and J. P. Hart, Talanta, 2008, 75, 1221.

    Article  CAS  PubMed  Google Scholar 

  33. H. Xu, L. Zeng, D. Huang, Y. Xian, and L. Jin, Food Chem., 2008, 109, 834.

    Article  CAS  PubMed  Google Scholar 

  34. S. Laschi, I. Palchetti, and M. Mascini, Sens. Actuators, B, 2006, 114, 460.

    Article  CAS  Google Scholar 

  35. I. Palchetti, S. Laschi, and M. Mascini, Anal. Chim. Acta, 2005, 530, 61.

    Article  CAS  Google Scholar 

  36. V. Guzsvány, H. Nakajima, N. Soh, K. Nakano, and T. Imato, Anal. Chim. Acta, 2010, 658, 12.

    Article  PubMed  Google Scholar 

  37. J. M. Trindade, L. C. Martiniano, V. R. A. Gonçalves, A. G. Souza, A. L. B. Marques, G. L. Baugis, T. C. O. Fonseca, C. Song, J. Zhang, and E. P. Marques, Fuel, 2012, 91, 26.

    Article  CAS  Google Scholar 

  38. K. C. Honeychurch, J. P. Hart, and D. C. Cowell, Anal. Chim. Acta, 2001, 431, 89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Dou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, F., Dou, J., Ding, A. et al. Determination of Lead by Square Wave Anodic Stripping Voltammetry Using an Electrochemical Sensor. ANAL. SCI. 29, 571–577 (2013). https://doi.org/10.2116/analsci.29.571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.571

Navigation