Skip to main content
Log in

The Micro-Flow Reaction System Featured the Liquid–Liquid Interface Created with Ternary Mixed Carrier Solvents in a Capillary Tube

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A micro-flow reaction system was developed in which liquid–liquid interface was created based on the tube radial distribution of ternary mixed carrier solvents. The system was constructed from double capillary tubes having different inner diameters (100 and 250 μm i.d.). The smaller tube was inserted into the larger one through a T-type joint. The reaction of a protein with a fluorescence derivatizing reagent was adopted as a model. A water–acetonitrile mixture (3:1 volume ratio) including bovine serum albumin (hydrophilic) was delivered into the large tube from the inside through the small tube and an acetonitrile–ethyl acetate mixture (7:4 volume ratio) containing fluorescamine (hydrophobic) as a derivatizing reagent was delivered from the outside through the joint. Solutions were mixed through the double capillary tubes to promote ternary mixed carrier solvents (water–acetonitrile–ethyl acetate; 1:2:1 volume ratio). The liquid–liquid interface was created based on the tube radial distribution of ternary solvents in the larger tube. The derivatization reaction was performed in the larger, or reaction, tube in the micro-flow system. The fluorescence intensity of the fluorescamine-derivatized bovine serum albumin obtained by the system, which specifically included the kinetic liquid–liquid interface in the tube, was greater than that obtained through a batch reaction using a homogeneous solution of water–acetonitrile (1:2 volume ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Ghanim and M. Z. Abdullah, Talanta, 2011, 85, 28.

    Article  CAS  PubMed  Google Scholar 

  2. P. Hrncirik and J. Nahlik, Chem. Biochem. Eng., 2010, 24, 489.

    CAS  Google Scholar 

  3. C.-G. Yang, Z.-R. Xu, and J.-H. Wang, Trends Anal. Chem., 2010, 29, 141.

    Article  CAS  Google Scholar 

  4. E. Guihen and W. T. O’Connor, Electrophoresis, 2010, 31, 55.

    Article  CAS  PubMed  Google Scholar 

  5. S. Terabe, Anal. Chem., 2004, 76, 240.

    Article  Google Scholar 

  6. C. A. Lucy, A. M. MacDonald, and M. D. Gulcev, J. Chromatogr., A, 2008, 1184, 81.

    Article  CAS  PubMed  Google Scholar 

  7. K. Otsuka, Chromatography, 2007, 28, 1.

    CAS  Google Scholar 

  8. H. Small, F. L. Saunders, and J. Solc, Adv. Colloid Interface Sci., 1976, 6, 237.

    Article  CAS  Google Scholar 

  9. R. Umehara, M. Harada, and T. Okada, J. Sep. Sci., 2009, 32, 472.

    Article  CAS  PubMed  Google Scholar 

  10. N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, and K. Tsukagoshi, Analyst, 2011, 136, 927.

    Article  CAS  PubMed  Google Scholar 

  11. N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2011, 27, 259.

    Article  CAS  PubMed  Google Scholar 

  12. M. Murakami, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2011, 27, 793.

    Article  CAS  PubMed  Google Scholar 

  13. N. Jinno, M. Itano, M. Hashimoto, and K. Tsukagoshi, Talanta, 2009, 79, 1348.

    Article  CAS  PubMed  Google Scholar 

  14. N. Jinno, M. Murakami, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2010, 26, 737.

    Article  CAS  PubMed  Google Scholar 

  15. S. Fujinaga, N. Jinno, M. Hashimoto, and K. Tsukagoshi, J. Sep. Sci., 2011, 34, 2833.

    Article  CAS  PubMed  Google Scholar 

  16. M. Tjahjono, C. Huiheng, E. Widjaja, K. Sa-Ei, and M. Garland, Talanta, 2009, 79, 856.

    Article  CAS  PubMed  Google Scholar 

  17. G. El-Subruiti, G. Younes, and M. Jaber, Prog. React. Kinet. Mech., 2011, 36, 73.

    Article  CAS  Google Scholar 

  18. Y. M. A. Yamada, T. Watanabe, T. Beppu, N. Fukuyama, K. Torii, and Y. Uozaki, Chem.—A Eur. J., 2010, 16, 11311.

    Article  CAS  Google Scholar 

  19. J. Jovanovic, E. V. Rebrov, T. A. Nijhuis, V. Hessel, and J. C. Schouten, Ind. Eng. Chem. Res., 2010, 49, 2681.

    Article  CAS  Google Scholar 

  20. K. Tsukagoshi, Y. Hattori, T. Hayashi, R. Nakajima, K. Yamashita, and H. Maeda, Anal. Sci., 2008, 24, 1393.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Masuhara, N. Jinno, M. Hashimoto, and K. Tsukagoshi, Chem. Lett., 2011, 40, 804.

    Article  CAS  Google Scholar 

  22. K. Tsukagoshi, A. Tanaka, R. Nakajima, and T. Hara, Anal. Sci., 1996, 12, 525.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Tsukagoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuhara, Y., Jinno, N., Hashimoto, M. et al. The Micro-Flow Reaction System Featured the Liquid–Liquid Interface Created with Ternary Mixed Carrier Solvents in a Capillary Tube. ANAL. SCI. 28, 439–444 (2012). https://doi.org/10.2116/analsci.28.439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.439

Navigation