Skip to main content
Log in

Selection of the NIR Region for a Regression Model of the Ethanol Concentration in Fermentation Process by an Online NIR and Mid-IR Dual-Region Spectrometer and 2D Heterospectral Correlation Spectroscopy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 – 1200 cm−1 region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm–1, which result from the combinations and overtones of the C–H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm−1 arising from the CH3 asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ozaki, Anal. Sci., 2012, 28, 545.

    Article  CAS  PubMed  Google Scholar 

  2. K. A. Lee, “Near-Infrared Spectroscopy in Food Science and Technology”, ed. Y. Ozaki, W. F. McCluer, and A. A. Christy, 2006, Chap. 9, Wiley Interscience, New York, 361.

  3. M. B. Simpson, “Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries”, ed. K. A. Bakeev, 2nd ed., 2010, John Wiley & Sons, Ltd., Chichester, UK, 107.

  4. M. Watari, Opt. Rev., 2010, 17, 317.

    Article  CAS  Google Scholar 

  5. J. H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, Anal. Chem., 2002, 74, 3555.

    Article  CAS  PubMed  Google Scholar 

  6. Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, and Y. Ozaki, Anal. Chim. Acta, 2004, 501, 183.

    Article  CAS  Google Scholar 

  7. T. Genkawa, M. Watari, T. Nishii, and Y. Ozaki, Appl. Spectrosc., 2012, 66, 773.

    Article  CAS  PubMed  Google Scholar 

  8. I. Noda, Appl. Spectrosc., 1993, 47, 1329.

    Article  CAS  Google Scholar 

  9. I. Noda, A. E. Dowrey, and C. I. Marcott, Appl. Spectrosc., 1993, 47, 1317.

    Article  CAS  Google Scholar 

  10. I. Noda and Y. Ozaki. “Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy—”, 2004, John Wiley & Sons Ltd., Chichester, UK, 1.

  11. I. Noda, Anal. Sci., 2007, 23, 139.

    Article  PubMed  Google Scholar 

  12. T. Amari and Y. Ozaki, Macromolecules, 2002, 35, 8020.

    Article  CAS  Google Scholar 

  13. B. Czarnik-Matusewicz, S. Pilorz, and J. P. Hawranek, Anal. Chim. Acta, 2005, 544, 15.

    Article  CAS  Google Scholar 

  14. R. A. Cocciardi, A. A. Ismail, Y. Wang, and J. Sedman, J. Agric. Food Chem., 2006, 54, 6475.

    Article  CAS  PubMed  Google Scholar 

  15. S. Watanabe, I. Noda, and Y. Ozaki, J. Mol. Struct., 2008, 883884, 173.

  16. S. Watanabe, I. Noda, and Y. Ozaki, Polymer, 2008, 49, 774.

    Article  CAS  Google Scholar 

  17. A. Aït Kaddour, M. Mondet, and B. Cuq, J. Cereal Sci., 2008, 48, 678.

    Article  Google Scholar 

  18. V. R. Kondepati and H. M. Heise, Curr. Trends Biotechnol. Pharm., 2008, 2, 117.

    CAS  Google Scholar 

  19. R. Nagarajan, A. Gupta, R. Mehrotra, and M. M. Bajaj, J. Autom. Methods Manage. Chem., 2006, 2006, 1.

    Google Scholar 

  20. A. G. Cavinato, D. M. Mayes, Z. Ge, and J. B. Callis, Anal. Chem., 1990, 62, 1977.

    Article  CAS  PubMed  Google Scholar 

  21. M. Blanco, A. C. Peinado, and J. Mas, Biotechnol. Bioeng., 2004, 88, 536.

    Article  CAS  PubMed  Google Scholar 

  22. V. Di Egidio, N. Sinelli, G. Giovanelli, A. Moles, and E. Casiraghi, Eur. Food Res. Technol., 2010, 230, 947.

    Article  Google Scholar 

  23. S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov, Mol. Phys., 2010, 108, 2427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Genkawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishii, T., Genkawa, T., Watari, M. et al. Selection of the NIR Region for a Regression Model of the Ethanol Concentration in Fermentation Process by an Online NIR and Mid-IR Dual-Region Spectrometer and 2D Heterospectral Correlation Spectroscopy. ANAL. SCI. 28, 1165–1170 (2012). https://doi.org/10.2116/analsci.28.1165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.1165

Navigation