Skip to main content
Log in

Magnetic Beads-based Chemiluminescence Substrate-resolved Duplex Immunoassay for Sequential Detection of Two Ischemic Stroke Markers with Two Orders of Concentration Difference

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Herein we have demonstrated a novel protocol to integrating two immunoassay procedures for performing a sequential dual-protein determination, based on a chemiluminescence (CL) substrate-resolved technology. We evaluated our method for the sequential determination of S100β and neuron-specific enolase (NSE) by using alkaline phosphatase (ALP) and horseradish peroxidase (HRP) as two different labels. Especially sharply different and suitable linear ranges and detection limits were successfully obtained for these two markers. Briefly, a “sandwich-type” detection strategy is employed in our design, where capture antibodies against S100β and NSE were coupled to magnetic beads. The quantification of NSE was obtained by further reacting with ALP modified antibodies and measurements by catalyzed chemiluminescence while the determination of S100β was accomplished with HRP-labeled anti-rabbit IgG. A simple CL setup was employed to perform our novel multiplexed protein assays in a single experiment. No obvious cross-reaction was observed. S100β and NSE were found to be suitably assayed in the ranges of 0.02 - 1 and 1 - 20 ng/mL, and the limits of detection were 0.005 and 0.2 ng/mL for S100β and NSE, respectively. It is straightforward to adapt this strategy to detect a spectrum of other biomarkers, which can provide important information about the early-stage diagnosis of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, Neuropharmacology, 2008, 55, 310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. W. V. Flynn, R. S. M. MaWalter, and A. S. F. Doney, Neuropharmacology, 2008, 55, 250.

    Article  CAS  PubMed  Google Scholar 

  3. H. J. Milionis, E. Liberopoulos, J. Goudevenos, E. T. Bairaktari, K. Seferiadis, and M. S. Elisaf, Int. J. Cardiol., 2005, 99, 269.

    Article  PubMed  Google Scholar 

  4. N. R. Sims and H. Muyderman, Bba-Mol. Basis. Dis., 2010, 1802, 80.

    Article  CAS  Google Scholar 

  5. J. B. Fiebach, P. D. Schellinger, O. Jansen, M. Meyer, P. Wilde, J. Bender, P. Schramm, E. Juttler, J. Oehler, M. Hartmann, S. Hahnel, M. Knauth, W. Hacke, and K. Sartor, Stroke, 2002, 33, 2206.

    Article  CAS  PubMed  Google Scholar 

  6. K. Fassbender, R. Schmidt, A. Schreiner, M. Fatar, F. Muhlhauser, M. Daffertshofer, and M. Hennerici, J. Neurol. Sci., 1997, 148, 101.

    Article  CAS  PubMed  Google Scholar 

  7. T. Buttner, S. Weyers, T. Postert, R. Sprengelmeyer, and W. Kuhn, Stroke, 1997, 28, 1961.

    Article  CAS  PubMed  Google Scholar 

  8. M. T. Wunderlich, A. D. Ebert, T. Kratz, M. Goertler, S. Jost, and M. Herrmann, Stroke, 1999, 30, 1190.

    Article  CAS  PubMed  Google Scholar 

  9. U. Missler, M. Wiesmann, C. Friedrich, and M. Kaps, Stroke, 1997, 28, 1956.

    Article  CAS  PubMed  Google Scholar 

  10. R. T. Cunningham, I. S. Young, J. Winder, M. J. Okane, S. Mckinstry, C. F. Johnston, O. M. Dolan, S. A. Hawkins, and K. D. Buchanan, Eur. J. Clin. Invest., 1991, 21, 497.

    Article  CAS  PubMed  Google Scholar 

  11. M. S. Wilson, Anal. Chem., 2005, 77, 1496.

    Article  CAS  PubMed  Google Scholar 

  12. L. J. Kricka, Clin. Chem., 1992, 38, 327.

    Article  CAS  PubMed  Google Scholar 

  13. H. Y. Kang, J. R. Miao, Z. J. Cao, and J. Z. Lu, Analyst, 2009, 134, 2246.

    Article  CAS  PubMed  Google Scholar 

  14. D. M. Rissin and D. R. Walt, Anal. Chim. Acta, 2006, 564, 34.

    Article  CAS  PubMed  Google Scholar 

  15. B. I. Fall, B. Eberlein-Konig, H. Behrendt, R. Niessner, J. Ring, and M. G. Weller, Anal. Chem., 2003, 75, 556.

    Article  CAS  PubMed  Google Scholar 

  16. B. G. Knecht, A. Strasser, R. Dietrich, E. Martlbauer, R. Niessner, and M. G. Weller, Anal. Chem., 2004, 76, 646.

    Article  CAS  PubMed  Google Scholar 

  17. C. Fernandez-Sanchez, C. J. McNeil, and K. Rawson, Trac-Trend Anal. Chem., 2005, 24, 37.

    Article  CAS  Google Scholar 

  18. K. Kojima, A. Hiratsuka, H. Suzuki, K. Yano, K. Ikebukuro, and I. Karube, Anal. Chem., 2003, 75, 1116.

    Article  CAS  PubMed  Google Scholar 

  19. M. S. Wilson and W. Y. Nie, Anal. Chem., 2006, 78, 6476.

  20. Y. Cui, B. Ren, J. L. Yao, R. A. Gu, and Z. Q. Tian, J. Raman Spectrosc., 2007, 38, 896.

    Article  CAS  Google Scholar 

  21. A. G. V. de Prada, N. Pena, C. Parrado, A. J. Reviejo, and J. M. Pingarron, Talanta, 2004, 62, 896.

    Article  Google Scholar 

  22. D. S. Elenis, P. C. Ioannou, and T. K. Christopoulos, Anal. Chem., 2007, 79, 9433.

    Article  CAS  PubMed  Google Scholar 

  23. H. Li, Z. J. Cao, Y. H. Zhang, C. W Lau, and J. Z. Lu, Anal. Methods, 2010, 2, 1193.

    Article  Google Scholar 

  24. Z. F. Fu, F. Yan, H. Liu, Z. J. Yang, and H. X. Ju, Biosens. Bioelectron., 2008, 23, 1063.

    Article  CAS  PubMed  Google Scholar 

  25. F. J. Hayes, H. B. Halsall, and W. R. Heineman, Anal. Chem., 1994, 66, 1860.

  26. S. Eriksson, M. Vehniainen, T. Jansen, V. Meretoja, P. Saviranta, K. Pettersson, and T. Lovgren, Clin. Chem., 2000, 46, 658.

    Article  CAS  PubMed  Google Scholar 

  27. E. E. Swartzman, S. J. Miraglia, J. Mellentin-Michelotti, L. Evangelista, and P. M. Yuan, Anal. Biochem., 1999, 271, 143.

    Article  CAS  PubMed  Google Scholar 

  28. K. E. Sapsford, A. Rasooly, C. R. Taitt, and F. S. Ligler, Anal. Chem., 2004, 76, 433.

    Article  CAS  PubMed  Google Scholar 

  29. G. D. Liu, J. Wang, J. Kim, M. R. Jan, and G. E. Collins, Anal. Chem., 2004, 76, 7126.

    Article  CAS  PubMed  Google Scholar 

  30. U. Hafeli, W. Schutt, J. Teller, and M. Zborowski, “Scientific and Clinical Applications of Magnetic Carriers”, 1997, Plenum, New York.

  31. Q. W. Peng, Z. J. Cao, C. W. Lau, M. Kai, and J. Z. Lu, Analyst, 2011, 136, 140.

    Article  CAS  PubMed  Google Scholar 

  32. A. Csordas, A. E. Gerdon, J. D. Adams, J. Qian, S. S. Oh, Y. Xiao, and H. T. Soh, Angew. Chem., Int. Ed., 2009, 355.

  33. X. Mao, M. Baloda, A. S. Gurung, Y. H. Lin, and G. D. Liu, Electrochem. Commun., 2008, 10, 1636.

    Article  CAS  Google Scholar 

  34. S. C. Zhang, C. Zhang, Z. Xing, and X. R. Zhang, Clin. Chem., 2004, 50, 1214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Jianzhong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xu, Q., Peng, Q. et al. Magnetic Beads-based Chemiluminescence Substrate-resolved Duplex Immunoassay for Sequential Detection of Two Ischemic Stroke Markers with Two Orders of Concentration Difference. ANAL. SCI. 27, 739–743 (2011). https://doi.org/10.2116/analsci.27.739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.739

Navigation