Skip to main content
Log in

Electrochemical Determination of Oxidative Damaged DNA with High Sensitivity and Stability Using a Nanocarbon Film

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We describe the electrochemical determination of oxidative damaged DNA by using a nanocarbon film electrode combined with a high performance liquid chromatography (HPLC) system. The nanocarbon film was formed by employing the electron cyclotron resonance sputtering method, and has a nano-crystalline sp2 and sp3 mixed bond structure with an atomically flat surface. This film electrode provided the high electrode activity and stability needed to quantitatively detect oxidative damaged DNA, 8-hydroxy-2'-deoxyguanosine (8-OHdG), by direct electrochemical oxidation. The coefficient of variation (C.V.) value of 1 µM 8-OHdG at our film electrode was 0.75% (n = 12), which constitutes superior reproducibility to that of a conventional glassy carbon (GC) electrode (9.28%, n = 12) in flow-injection analysis. This was because the nanocarbon film suppressed fouling for the oxidized product of 8-OHdG owing to its hydrophilically ultraflat and chemically stable surface. We also investigated the performance of HPLC with an electrochemical detection (HPLC-ECD) system using our nanocarbon film electrode. The detection limit for 8-OHdG at the nanocarbon film electrode was 3 nM, which was superior to the detection limit of the GC electrode (7.2 nM). Furthermore, this electrode was more suitable for use in a urinary 8-OHdG experiment than the GC electrode. The concentration of urinary 8-OHdG in the urinary sample was 8.30 nM. These results indicate that this HPLC-ECD system with our nanocarbon film electrode enables us to realize an accurate, sensitive, reproducible and easy to use analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kasai, H. Hayami, Z. Yamaizumi, H. Saito, and S. Nishimura, Nucleic Acids Res., 1984, 12, 2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. C. Peoples and H. T. Karnes, J. Chromatogr., B, 2005, 827, 5.

    Article  CAS  Google Scholar 

  3. M. S. Cooke, R. Olinski, S. Loft, and Escula, Cancer Epidem. Biomar., 2008, 17, 3.

    Article  CAS  Google Scholar 

  4. M. S. Cooke, R. Olinski, S. Loft, and M. D. Evans, Free Radical Res., 2008, 42, S102.

  5. A. Valavanidis, T. Vlachogianni, and C. Fiotakis, J. Environ. Sci. Health, Part C, 2009, 27, 120.

    Article  CAS  Google Scholar 

  6. M. S. Cooke, M. D. Evans, R. Dove, R. Rozalski, D. Gackowski, A. Siomek, J. Lunec, and R. Olinski, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2005, 574, 58.

    Article  CAS  Google Scholar 

  7. D. Germadnik, A. Pilger, and H. W. Rudiger, J. Chromatogr., B, 1997, 689, 399.

    Article  CAS  Google Scholar 

  8. M. L. Hamilton, Z. M. Guo, C. D. Fuller, H. Van Remmen, W. F. Ward, S. N. Austad, D. A. Troyer, I. Thompson, and A. Richardson, Nucleic Acids Res., 2001, 29, 2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. S. de Martinis and M. D. L. P. Bianchi, Pharmacol. Res., 2002, 46, 129.

    Article  PubMed  Google Scholar 

  10. C. Y. Chen, L. Y. Qu, B. Li, L. Xing, G. Jia, T. C. Wang, Y. X. Gao, P. Q. Zhang, M. Li, W. Chen, and Z. F. Chai, Clin. Chem., 2005, 51, 759.

    Article  CAS  PubMed  Google Scholar 

  11. A. Pilger, S. Ivancsits, D. Germadnik, and H. W. Rudiger, J. Chromatogr., B, 2002, 778, 393.

    Article  CAS  Google Scholar 

  12. M. Nakano, Y. Kawanishi, S. Kamohara, Y. Uchida, M. Shiota, Y. Inatomi, T. Komori, K. Miyazawa, K. Gondo, and I. Yamasawa, Free Radical Biol. Med., 2003, 35, 826.

    Article  CAS  Google Scholar 

  13. S. Koide, Y. Kinoshita, N. Ito, J. Kimura, K. Yokoyama, and I. Karube, J. Chromatogr., B, 2010, 878, 2163.

    Article  CAS  Google Scholar 

  14. A. Siomek, A. Rytarowska, A. Szaflarska-Poplawska, D. Gackowski, R. Rozalski, T. Dziaman, M. Czerwionka-Szaflarska, and R. Olinski, Carcinogenesis, 2006, 27, 405.

    Article  CAS  PubMed  Google Scholar 

  15. A. Weimann, D. Belling, and H. E. Poulsen, Free Radical Biol. Med., 2001, 30, 757.

  16. A. Weimann, D. Belling, and H. E. Poulsen, Nucleic Acids Res., 2002, 30.

  17. M. Harri, H. Kasai, T. Mori, J. Tornaeus, K. Savela, and K. Peltonen, J. Chromatogr., B, 2007, 853, 242.

    Article  CAS  Google Scholar 

  18. S. Toyokuni, T. Tanaka, Y. Hatton, Y. Nishiyama, A. Yoshida, K. Uchida, H. Hiai, H. Ochi, and T. Osawa, Lab. Invest., 1997, 76, 365.

    CAS  PubMed  Google Scholar 

  19. S. Toyokuni, Pathol. Int., 1999, 49, 91.

    Article  CAS  PubMed  Google Scholar 

  20. K. Shimoi, H. Kasai, N. Yokota, S. Toyokuni, and N. Kinae, Cancer Epidem. Biomar., 2002, 11, 767.

  21. C. Bolin and F. Cardozo-Pelaez, J. Chromatogr., B, 2007, 856, 121.

    Article  CAS  Google Scholar 

  22. S. Hirono, S. Umemura, M. Tomita, and R. Kaneko, Appl. Phys. Lett., 2002, 80, 425.

    Article  CAS  Google Scholar 

  23. O. Niwa, J. Jia, Y. Sato, D. Kato, R. Kurita, K. Maruyama, K. Suzuki, and S. Hirono, J. Am. Chem. Soc., 2006, 128, 7144.

    Article  CAS  PubMed  Google Scholar 

  24. J. B. Jia, D. Kato, R. Kurita, Y. Sato, K. Maruyama, K. Suzuki, S. Hirono, T. Ando, and O. Niwa, Anal. Chem., 2007, 79, 98.

    Article  CAS  PubMed  Google Scholar 

  25. N. Sekioka, D. Kato, R. Kurita, S. Hirono, and O. Niwa, Sens. Actuators, B, 2008, 129, 442.

    Article  CAS  Google Scholar 

  26. D. Kato, N. Sekioka, A. Ueda, R. Kurita, S. Hirono, K. Suzuki, and O. Niwa, J. Am. Chem. Soc., 2008, 130, 3716.

    Article  CAS  PubMed  Google Scholar 

  27. D. Kato, N. Sekioka, A. Ueda, R. Kurita, S. Hirono, K. Suzuki, and O. Niwa, Angew. Chem., Int. Ed., 2008, 47, 6681.

    Article  CAS  Google Scholar 

  28. K. Goto, D. Kato, N. Sekioka, A. Ueda, S. Hirono, and O. Niwa, Anal. Biochem., 2010, 405, 59.

    Article  CAS  PubMed  Google Scholar 

  29. N. Sekioka, D. Kato, A. Ueda, T. Kamata, R. Kurita, S. Umemura, S. Hirono, and O. Niwa, Carbon, 2008, 46, 1918.

    Article  CAS  Google Scholar 

  30. H. Inokuchi, D. Kato, A. Ueda, and O. Niwa, Electroanalysis, 2011, 23, 827.

    Article  CAS  Google Scholar 

  31. T. A. Ivandini, K. Honda, T. N. Rao, A. Fujishima, and Y. Einaga, Talanta, 2007, 71, 648.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, D., Komoriya, M., Nakamoto, K. et al. Electrochemical Determination of Oxidative Damaged DNA with High Sensitivity and Stability Using a Nanocarbon Film. ANAL. SCI. 27, 703–707 (2011). https://doi.org/10.2116/analsci.27.703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.703

Navigation