Skip to main content
Log in

Preparation and Evaluation of a Chrysotile Asbestos-containing Standard Material for Validating X-Ray Diffractometric Quantitation

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A standard material containing chrysotile asbestos for the validation of x-ray diffractometric quantitation was developed using an asbestos-containing building material i.e., perlite board. The board as the base material was crushed, pulverized, and homogenized. The homogeneity of the powder of perlite board was estimated by analysis of variance. The diffraction intensity values of the crystalline phases and the concentrations of elements determined by x-ray diffractometry and x-ray fluorescence analysis were used for analysis of variance. There is no significant difference between the within-bottle variance and the between-bottle variance, indicating that the powdered perlite board was sufficiently homogenous. The concentration of chrysotile in the material was determined using two methods: an internal standard/x-ray diffractometry method and the x-ray diffractometry/Rietveld refinement. The concentration of chrysotile in the material was determined by an internal standard/x-ray diffractometry method and the material had a chrysotile concentration of 24.1 ± 0.2 mass%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Chissick, in “Encyclopedia of Physical Science and Technology”, ed. R. A. Meyers, 1987, Academic Press, Orlando, 79.

  2. The Asbestos NESHAP (40 CFR Part 763—Asbestos), 1973, United States Environmental Protection Agency.

  3. JIS A 1481, “Determination of Asbestos in Building Material Products”, 2008, Japanese Industrial Standards Committee, Tokyo.

    Google Scholar 

  4. N. Kohyama, Industrial Health, 1980, 18, 69.

    Article  CAS  Google Scholar 

  5. B. A. Lange and J. C. Haartz, Anal. Chem., 1979, 51, 520.

    Article  CAS  Google Scholar 

  6. S. Puledda and L. Paoletti, Ann. Occup. Hyg., 1994, 38, 59.

    CAS  Google Scholar 

  7. H. W. Dunn and J. H. Stewart, Jr., Anal. Chem., 1982, 54, 1122.

    Article  CAS  Google Scholar 

  8. R. Hu, J. Block, J. A. Hriljac, C. Eylem, and L. Petrakis, Anal. Chem., 1996, 68, 3112.

    Article  CAS  Google Scholar 

  9. J. A. Hriljac, C. Eylem, Q. Zhu, R. Sabatini, L. Petrakis, R. Hu, and J. Block, Anal. Chim. Acta, 1997, 350, 221.

    Article  Google Scholar 

  10. G. Buccolieri and L. De Stefano, Ann. Chim., 2001, 91, 277.

  11. M. Taylor, Analyst, 1978, 103, 1009.

    Article  CAS  Google Scholar 

  12. L. De Stefano and F. De Luca, Ann. Chim., 1998, 88, 839.

    CAS  Google Scholar 

  13. L. De Stefano, F. De Luca, G. Buccolieri, and P. Plescia, Powder Diffr., 2000, 15, 26.

    Article  CAS  Google Scholar 

  14. T. Asahi, T. Matsudaira, S. Kobayashi, K. Nakayama, and T. Nakamura, Anal. Sci., 2010, 26, 1295.

    Article  CAS  PubMed  Google Scholar 

  15. R. F. Hirsch, Anal. Chem., 1977, 49, 694A.

  16. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.

    Article  CAS  Google Scholar 

  17. F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, 321–324, 198.

    Article  Google Scholar 

  18. G. Falini, E. Foresti, M. Gazzano, A. F. Gualtieri, M. Leoni, I. G. Lesci, and N. Roveri, Chem. Eur. J., 2004, 10, 3043.

    Article  CAS  PubMed  Google Scholar 

  19. M. J. Cooper, Acta Crystallogr., Sect. B: Struct. Sci., 1982, 38, 264.

    Article  Google Scholar 

  20. M. Prencipe, F. Pascal, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, and R. Dovesi, Phys. Chem. Miner., 2004, 31, 559.

    Article  CAS  Google Scholar 

  21. A. L. Rosa, A. A. El-Barbary, M. I. Heggie, and P. R. Briddon, Phys. Chem. Miner., 2005, 32, 323.

    Article  CAS  Google Scholar 

  22. S. Merlino, E. Bonaccorsi, and T. Armbruster, Eur. J. Mineral., 2000, 12, 411.

    Article  CAS  Google Scholar 

  23. K. Nakayama, X-Ray Spectrom., 2007, 36, 130.

    Article  CAS  Google Scholar 

  24. D. L. Bish and R. C. Reynolds, “Sample Preparation for XRD”, ed. D. L. Bish and J. E. Post, 1989, Vol. 20, Washington, D.C., 73–97.

  25. F. D. McClure, OMA PROGRAM MANUAL, Appendix E, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoharu Asahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asahi, T., Kobayashi, S., Nakayama, K. et al. Preparation and Evaluation of a Chrysotile Asbestos-containing Standard Material for Validating X-Ray Diffractometric Quantitation. ANAL. SCI. 27, 1217–1221 (2011). https://doi.org/10.2116/analsci.27.1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.1217

Navigation