Skip to main content
Log in

Development of Signaling Echo Method for Cell-based Quantitative Efficacy Evaluation of Anti-cancer Drugs in Apoptosis without Drug Presence Using High-precision Surface Plasmon Resonance Sensing

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We propose a rapid and label-free quantitative evaluation of anti-cancer drug efficacy in apoptosis using live cancer cells cultured on a sensor chip. The resultant custom-made, high-precision surface plasmon resonance (SPR) sensor monitors the inner mitochondrial membrane’s potential change (ΔΨm). For trans-membrane anti-cancer drugs to be effective, continuous potential changes arising from the crossing of the membrane by the drug of interest prevent ΔΨm monitoring. Herein, we report on a novel signaling echo method that avoids this disturbance; the cancer cells are incubated with a specific anti-cancer drug, with subsequent removal of the drug before SPR measurements. The cell reaction without any drug was monitored as the differential SPR angle rate of change for 10 min from 30 min after a sensor chip was set on a prism. The cell reaction after 60 min pre-incubation with a drug was significantly related to the conventional cell viability after 48 h (P <0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Association, “Cancer Facts & Figures 2008”, 2009, American Cancer Society, Atlanta, GA.

    Google Scholar 

  2. M. L. Rothenberg, D. P. Carbone, and D. H. Johnson, Nat. Rev. Cancer, 2003, 3, 303.

    Article  CAS  PubMed  Google Scholar 

  3. D. Sidransky, Nat. Rev. Cancer, 2002, 2, 210.

    Article  CAS  PubMed  Google Scholar 

  4. J. E. González and P. A. Negulescu, Curr. Opin. Biotechnol., 1998, 9, 624.

    Article  PubMed  Google Scholar 

  5. B. D. Gehm, J. M. McAndrews, P. Y. Chien, and J. L. Jamieson, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 14138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Q. B. She, W. Y. Ma, M. Wang, A. Kaji, C. T. Ho, and Z. dong, Oncogene, 2003, 22, 2143.

    Article  CAS  PubMed  Google Scholar 

  7. S. B. Le, E. l. Holmuhamedov, V. L. Narayanan, E. A. Sausville, and S. H. Kaufmann, Cell Death Diff., 2006, 13, 151.

    Article  CAS  Google Scholar 

  8. A. Kosaihira and T. Ona, Anal. Bioanal. Chem., 2008, 391, 1889.

    Article  CAS  PubMed  Google Scholar 

  9. P S. Moore, B. Sipos, S. Orlandini, C. Sorio, F. X. Real, N. R. Lemoine, T. Gress, C. Bassi, G. Klöppel, H. Kalthoff, H. Ungefroren, M. Löhr, and A. Scarpa, Virchows Arch., 2001, 439, 798.

    Article  CAS  PubMed  Google Scholar 

  10. V. P. Savitskiy, T. V. Shman, and M. P. Potapnev, Cytometry B Clin. Cytom., 2003, 56B, 16.

    Article  Google Scholar 

  11. M. Castedo, K. Ferri, T. Roumier, D. Metivier, N. Zamzami, and G. Kroemer, J. Immunol. Methods, 2002, 265, 39.

    Article  CAS  PubMed  Google Scholar 

  12. d. G. Johnson and C. L. Walker, Annu. Rev. Pharmacol. Toxicol., 1999, 39, 295.

    Article  CAS  PubMed  Google Scholar 

  13. M. Malumbres and M. Barbacid, Nat. Rev. Cancer, 2009, 9, 153.

    Article  CAS  PubMed  Google Scholar 

  14. A. E. Leitch, C. Haslett, and A. G. Rossi, Br. J. Phamacol., 2009, 158, 1004.

    Article  CAS  Google Scholar 

  15. T. Abbas and A. Dutta, Nat. Rev. Cancer, 2009, 9, 400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. I. S. Chu, L. Hengst, and J. M. Slingerland, Nat. Rev. Cancer, 2009, 8, 253.

    Article  Google Scholar 

  17. G. I. Shapiro, J. Clin. Oncol., 2006, 24, 1770.

    Article  CAS  PubMed  Google Scholar 

  18. J. Węsierska-Gądek, M. Gueorguieva, J. Wojciechowski, and M. Horky, Pol. J. Pharmacol., 2004, 56, 635.

    PubMed  Google Scholar 

  19. E. A. Monaco III, C. M. Beaman-Hall, A. Mathur, and M. L. Vallano, Biochem. Pharmacol., 2004, 67, 1947.

    Article  Google Scholar 

  20. J. Wojciechowski, M. Horky, M. Gueorguieva, and J. Węsierska-Gądek, Int. J. Cancer, 2003, 106, 486.

    Article  CAS  PubMed  Google Scholar 

  21. S. Sui, Y. Dong, Y. Watanabe, F. Yamaguchi, N. Hatano, I. Tsukamoto, K. Izumori, and M Tokuda, Int. J. Oncol., 2005, 27, 907.

    CAS  PubMed  Google Scholar 

  22. S. Sui, Y. Dong, Y. Watanabe, F. Yamaguchi, N. Hatano, I. Tsukamoto, K. Izumori, and M. Tokuda, Anticancer Res., 2005, 25, 2639.

    CAS  PubMed  Google Scholar 

  23. M. Yokohira, K. Hosokawa, K. Yamakawa, K. Saoo, Y. Matsuda, Y. Zeng, T. Kuno, and K. Imaida, J. Biosci. Bioeng., 2008, 105, 545.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Dobashi, T. Takehana, and A. Ooi, Curr. Med. Chem., 2003, 10, 2549.

    Article  CAS  PubMed  Google Scholar 

  25. J. A. Pietenpol and Z. A. Stewart, Toxicology, 2002, 182–182, 474.

    Google Scholar 

  26. E. C. Pietsch, S. M. Sykes, S. B. McMahon, and M. E. Murphy, Oncogene, 2008, 27, 6507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D. R. Green and G. Kroemer, Nature, 2009, 458, 1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. Nylander, B. Liedberg, and T. Lind, Sens. Actuators, 1982/1983, 3, 79.

    Article  CAS  Google Scholar 

  29. S. Sjölander and C. Urbaniczky, Anal. Chem., 1991, 63, 2338.

    Article  PubMed  Google Scholar 

  30. CRC Handbook of Chemistry and Physics”, ed. R. C. Weast, 67th ed., 1987, CRC Press, Boca Raton, FL, D-218.

  31. S. J. Yoon and D. Kim, J. Opt. Soc. Am. A, 2007, 24, 2543.

    Article  Google Scholar 

  32. A. V. Kuznetsov and R. Margreiter, Int. J. Mol. Sci., 2009, 10, 1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. T. Liebermann and W. Knoll, Colloid Surf., A, 2000, 171, 115.

    Article  CAS  Google Scholar 

  34. S. Ekgasit, C. Thammacharoen, and W. Knoll, Anal. Chem., 2004, 76, 561.

    Article  CAS  PubMed  Google Scholar 

  35. M. Lebiedzinska, G. Szabadkai, A. W. E. Jones, J. Duszynski, and M. R. Wieckowski, Int. J. Biochem. Cell Biol., 2009, 41, 1805.

    Article  CAS  PubMed  Google Scholar 

  36. E. J. Griffiths and G. A. Rutter, Biochem. Biophys. Acta, 2009, 1787, 1342.

    Google Scholar 

  37. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, Opt. Lett., 2006, 31, 1085.

    Article  PubMed  Google Scholar 

  38. S. Salvioli, A. Ardizzoni, C. Franceschi, and A. Cossarizza, FEBS Lett., 1997, 411, 77.

    Article  CAS  PubMed  Google Scholar 

  39. J. Downward, Nature, 2006, 439, 274.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Ona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishijima, H., Kosaihira, A., Shibata, J. et al. Development of Signaling Echo Method for Cell-based Quantitative Efficacy Evaluation of Anti-cancer Drugs in Apoptosis without Drug Presence Using High-precision Surface Plasmon Resonance Sensing. ANAL. SCI. 26, 529–534 (2010). https://doi.org/10.2116/analsci.26.529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.529

Navigation