Skip to main content
Log in

Integration of Biomolecules into analytical Systems by Means of Silica Sol-Gel Technology

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Biomolecules, especially large polymeric molecules such as enzymes and antibodies, mediate various biological functions, including biochemical reactions and molecular recognition, with high reactivity, efficiency, selectivity and accuracy. Many researchers have investigated methods to take advantage of these characteristics in analytical devices. One way to accomplish this is to immobilize biomolecules in the devices. For example, biomolecules have been immobilized by means of silica sol-gel technology and used for basic research in the food and pharmaceutical industries. Proteins encapsulated by this method retain their structure and biological activity for a prolonged period. This review describes methodologies for immobilization of biomolecules and the applications of sol-gel technology to analytical devices, especially flow-through systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Levin, M. Pechet, L. Goldstein, and E. Katchalski, Biochemistry, 1964, 3, 1905.

    Article  CAS  PubMed  Google Scholar 

  2. H. H. Weetall, Biochim. Biophys. Acta, 1970, 212, 1.

    Article  CAS  PubMed  Google Scholar 

  3. C. K. Glassmeyer and J. D. Ogle, Biochemistry, 1971, 10, 786.

    Article  CAS  PubMed  Google Scholar 

  4. H. L. Brockman, J. H. Law, and F. J. Kezdy, J. Biol. Chem., 1973, 248, 4965.

    Article  CAS  PubMed  Google Scholar 

  5. S. Birnbaum and S. Nilsson, Anal. Chem., 1992, 64, 2872.

    Article  CAS  Google Scholar 

  6. S. Avrameas and T. Ternynck, Immunochemistry, 1969, 6, 53.

    Article  CAS  PubMed  Google Scholar 

  7. H. D. Brown, A. B. Patel, and S. K. Chattopadhyay, J. Biomed. Mater. Res., 1968, 2, 231.

    Article  CAS  PubMed  Google Scholar 

  8. T. M. Chang, Nature, 1971, 229, 117.

    Article  CAS  PubMed  Google Scholar 

  9. D. Allen and Z. E. Rassi, Electrophoresis, 2003, 24, 3962.

    Article  CAS  PubMed  Google Scholar 

  10. A.-M. Siouffi, J. Chromatogr., A, 2003, 1000, 801.

    Article  CAS  PubMed  Google Scholar 

  11. L. Rieux, H. Niederlander, E. Verpoorte, and R. Bischoff, J. Sep. Sci., 2005, 28, 1628.

    Article  CAS  PubMed  Google Scholar 

  12. F. Svec, Electrophoresis, 2006, 27, 947.

    Article  CAS  PubMed  Google Scholar 

  13. G. Zhu, L. Zhang, H. Yuan, Z. Liang, W. Zhang, and Y. Zhang, J. Sep. Sci., 2007, 30, 792.

    Article  CAS  PubMed  Google Scholar 

  14. W. Jin and J. D. Brennan, Anal. Chim. Acta, 2002, 461, 1.

    Article  CAS  Google Scholar 

  15. I. Gill, Chem. Mater., 2001, 13, 3404.

    Article  CAS  Google Scholar 

  16. I. Gill and A. Ballesteros, Trends Biotechnol., 2000, 18, 282.

    Article  CAS  PubMed  Google Scholar 

  17. G. Carturan, R. Dal Toso, S. Boninsegna, and R. J. Dal Monte, Mater. Chem., 2004, 14, 2087.

    Article  CAS  Google Scholar 

  18. A. C. Pierre, Biocatal. Biotransform., 2004, 22, 145.

    Article  CAS  Google Scholar 

  19. A. V. Rao and G. M. Pajonk, J. Non-Cryst. Solids, 2001, 285, 202.

    Article  Google Scholar 

  20. N. Nassif, C. Roux, T. Coradin, M.-N. Rager, O. M. M. Bouvet, and J. Livage, J. Mater. Chem., 2003, 13, 203.

    Article  CAS  Google Scholar 

  21. K. Sakai-Kato, M. Kato, H. Homma, T. Toyo’oka, and N. Utsunomiya-Tate, Anal. Chem., 2005, 77, 7080.

    Article  CAS  PubMed  Google Scholar 

  22. M. L. Ferrer, F. D. Monte, and D. Levy, Chem. Mater., 2002, 14, 3619.

    Article  CAS  Google Scholar 

  23. T.-J. M. Luo, R. Soong, E. Lan, B. Dunn, and C. Montemagno, Nat. Mater., 2005, 4, 220.

    Article  CAS  PubMed  Google Scholar 

  24. M. T. Dulay, J. Q. Quirino, B. Bennett, M. Kato, and R. N. Zare, Anal. Chem., 2001, 73, 3921.

    Article  CAS  PubMed  Google Scholar 

  25. M. Kato, K. Sakai-Kato, T. Toyo’oka, M. T. Dulay, J. Q. Quirino, B. Bennett, and R. N. Zare, J. Chromatogr., A, 2002, 961, 45.

    Article  CAS  PubMed  Google Scholar 

  26. K. Nakanishi and N. Soga, J. Am. Ceram. Soc., 1991, 74, 2518.

    Article  CAS  Google Scholar 

  27. K. Nakanishi and N. Soga, J. Non-Cryst. Solids, 1992, 139, 1.

    Article  CAS  Google Scholar 

  28. K. Nakanishi and N. Soga, J. Non-Cryst. Solids, 1992, 139, 14.

    Article  CAS  Google Scholar 

  29. K. Kanamori, K. Nakanishi, K. Hirao, and H. Jinnai, Colloids Surf., A, 2004, 241, 215.

    Article  CAS  Google Scholar 

  30. K. Kanamori, H. Yonezawa, K. Nakanishi, K. Hirao, and H. Jinnai, J. Sep. Sci., 2004, 27, 874.

    Article  CAS  PubMed  Google Scholar 

  31. H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, and N. Tanaka, Anal. Chem., 1996, 68, 3498.

    Article  CAS  PubMed  Google Scholar 

  32. K. Nakanishi, H. Shikata, N. Ishizuka, N. Koheiya, and N. Soga, J. High Resolut. Chromatogr., 2000, 23, 106.

    Article  CAS  Google Scholar 

  33. N. Ishizuka, H. Minakuchi, K. Nakanishi, N. Soga, H. Nagayama, K. Hosoya, and N. Tanaka, Anal. Chem., 2000, 72, 1275.

    Article  CAS  PubMed  Google Scholar 

  34. K. Miyamoto, T. Hara, H. Kobayashi, H. Morisaka, D. Tokuda, K. Horie, K. Koduki, S. Makino, N. Oscar, C. Yang, T. Kawabe, T. Ikegami, H. Takubo, Y. Ishihama, and N. Tanaka, Anal. Chem., 2008, 80, 8741.

    Article  CAS  PubMed  Google Scholar 

  35. M. A. Brook, Y. Chen, K. Guo, Z. Zhang, W. Jin, A. Deisingh, J. Cruz-Aguado, and J. D. Brennan, J. Sol-Gel Sci. Technol., 2004, 31, 343.

    Article  CAS  Google Scholar 

  36. J. A. Cruz-Aguado, Y. Chen, Z. Zhang, M. A. Brook, and J. D. Brennan, Anal. Chem., 2004, 76, 4182.

    Article  CAS  PubMed  Google Scholar 

  37. K. Flora and J. D. Brennan, Anal. Chem., 1998, 70, 4505.

    Article  CAS  PubMed  Google Scholar 

  38. L. Zheng, K. Flora, and J. D. Brennan, Chem. Mater., 1998, 10, 3974.

    Article  CAS  Google Scholar 

  39. C. Kauffmann and R. T. Mandelbaum, J. Biotechnol., 1998, 62, 169.

    Article  CAS  Google Scholar 

  40. M. T. Reetz, A. Zonta, J. Simpelkamp, and W. Konene, Angew. Chem., Int. Ed. Engl., 1995, 34, 301.

    Article  CAS  Google Scholar 

  41. M. Altstein, G. Segev, N. Aharonson, O. Ben-Aziz, A. Turniansky, and D. Avnir, J. Agric. Food Chem., 1998, 46, 3318.

    Article  CAS  Google Scholar 

  42. B. Q. Wang, B. Li, Q. Deng, and S. J. Dong, Anal. Chem., 1998, 70, 3170.

    Article  CAS  PubMed  Google Scholar 

  43. B. Wang and S. J. Dong, Talanta, 2000, 51, 565.

    Article  CAS  PubMed  Google Scholar 

  44. J. Z. Zhang, B. Li, Z.-X. Wang, G. J. Cheng, and S. J. Dong, Anal. Chim. Acta, 1999, 388, 71.

    Article  CAS  Google Scholar 

  45. Q. Chen, G. L. Kenausis, and A. Heller, J. Am. Chem. Soc., 1998, 120, 4582.

    Article  CAS  Google Scholar 

  46. M. Kato, H. Saruwatari, K. Sakai-Kato, and T. Toyo’oka, J. Chromatogr., A, 2004, 1044, 267.

    Article  CAS  PubMed  Google Scholar 

  47. S. Sakai, T. Ono, H. Iijima, and K. Kawakami, Biomaterials, 2001, 22, 2827.

    Article  CAS  PubMed  Google Scholar 

  48. D. K. Eggers and J. D. Valentine, J. Mol. Biol., 2001, 314, 911.

    Article  CAS  PubMed  Google Scholar 

  49. J. D. Brennan, D. Benjamin, E. Dibattista, and M. D. Gulcev, Chem. Mater., 2003, 15, 737.

    Article  CAS  Google Scholar 

  50. M. T. Reetz, P. Tielmann, W. Wiesenhoefer, W. Koenen, and A. Zonta, Adv. Synth. Catal., 2003, 345, 717.

    Article  CAS  Google Scholar 

  51. J. Ma, Z. Liang, X. Qiao, Q. Deng, D. Tao, L. Zhang, and Y. Zhang, Anal. Chem., 2008, 80, 2949.

    Article  CAS  PubMed  Google Scholar 

  52. A. Turniansky, D. Avnir, A. Bronshtein, N. Aharonson, and M. Altstein, J. Sol-Gel Sci. Technol., 1996, 7, 135.

    Article  CAS  Google Scholar 

  53. M. Chichna, D. Knopp, and R. Niessner, Anal. Chim. Acta, 1997, 339, 241.

    Article  Google Scholar 

  54. J. Zuhlke, D. Knopp, and R. Niessner, Fresenius’J. Anal. Chem., 1995, 352, 654.

    Article  Google Scholar 

  55. B. Spitzer, M. Cichna, P. Markl, G. Sontag, D. Knopp, and R. Niessner, J. Chromatogr., A, 2000, 880, 113.

    Article  CAS  PubMed  Google Scholar 

  56. M. Cichna, P. Markl, D. Knopp, and R. Niessner, J. Chromatogr., A, 2001, 919, 51.

    Article  CAS  PubMed  Google Scholar 

  57. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Mater. Lett., 1990, 10, 1.

    Article  CAS  Google Scholar 

  58. R. Zusman, D. A. Beckman, I. Zusman, and R. L. Brent, Anal. Biochem., 1992, 201, 103.

    Article  CAS  PubMed  Google Scholar 

  59. S. Bahrami, A. Bassi, and E. Yanful, J. Sol-Gel Sci. Technol., 2007, 41, 119.

    Article  Google Scholar 

  60. M. Cichna, J. Sol-Gel Sci. Technol., 2003, 26, 1159.

    Article  CAS  Google Scholar 

  61. R. Braunrath and M. Cichna, J. Chromatogr., A, 2005, 1062, 189.

    Article  CAS  PubMed  Google Scholar 

  62. T. Hrebicek and M. Cichna-Markl, J. Sol-Gel Sci. Technol., 2005, 36, 75.

    Article  Google Scholar 

  63. R. Stidl and M. Cichna-Markl, J. Sol-Gel Sci. Technol., 2007, 41, 175.

    Article  CAS  Google Scholar 

  64. L. E. Vera-Avila, E. Garcia-Salgado, M. P. Garcia de Llasera, and Araceli Pena-Alvarez, Anal. Biochem., 2008, 373, 272.

    Article  CAS  PubMed  Google Scholar 

  65. X. Zhang, D. Martens, P. M. Kramer, A. K. Kettrup, and X. Liang, J. Chromatogr., A, 2006, 1133, 112.

    Article  CAS  PubMed  Google Scholar 

  66. J. Ma, L. Zhang, Z. Liang, W. Zhang, and Y. Zhang, Anal. Chim. Acta, 2009, 632, 1.

    Article  CAS  PubMed  Google Scholar 

  67. J. Ma, L. Zhang, Z. Liang, W. Zhang, and Y. Zhang, J. Sep. Sci., 2007, 30, 3050.

    Article  CAS  PubMed  Google Scholar 

  68. T. R. Besanger, R. J. Hodgson, J. R. A. Green, and J. D. Brennan, Anal. Chim. Acta, 2006, 564, 106.

    Article  CAS  PubMed  Google Scholar 

  69. R. J. Hodgson, Y. Chen, Z. Zhang, D. Tleugabulova, H. Long, X. Zhao, M. Organ, M. A. Brook, and J. D. Brennan, Anal. Chem., 2004, 76, 2780.

    Article  CAS  PubMed  Google Scholar 

  70. P. Kovarik, R. J. Hodgson, T. Covey, M. A. Brook, and J. D. Brennan, Anal. Chem., 2005, 77, 3340.

    Article  CAS  PubMed  Google Scholar 

  71. R. J. Hodgson, M. A. Brook, and J. D. Brennan, Anal. Chem., 2005, 77, 4404.

    Article  CAS  PubMed  Google Scholar 

  72. J. Sharma, T. R. Besanger, and J. D. Brennan, Anal. Chem., 2008, 80, 3213.

    Article  CAS  PubMed  Google Scholar 

  73. E. Calleri, G. Massolini, D. Lubda, C. Temporini, F. Loiodice, and G. Caccialanza, J. Chromatogr., A, 2004, 1031, 93.

    Article  CAS  PubMed  Google Scholar 

  74. E. Calleri, C. Temporini, E. Perani, C. Stella, S. Rudaz, D. Lubda, G. Mellerio, J.-L. Veuthey, G. Caccialanza, and G. Massolini, J. Chromatogr., A, 2004, 1045, 99.

    Article  CAS  PubMed  Google Scholar 

  75. C. Temporini, E. Calleri, D. Campèse, K. Cabrera, G. Félix, and G. Massolini, J. Sep. Sci., 2007, 30, 3069.

    Article  CAS  PubMed  Google Scholar 

  76. R. Mallik, H. Xuan, and D. S. Hage, J. Chromatogr., A, 2007, 1149, 294.

    Article  CAS  PubMed  Google Scholar 

  77. K. Kawakami, D. Abe, T. Urakawa, A. Kawashima, Y. Oda, R. Takahashi, and S. Sakai, J. Sep. Sci., 2007, 30, 3077.

    Article  CAS  PubMed  Google Scholar 

  78. M. Kato, K. Sakai-Kato, N. Matsumoto, and T. Toyo’oka, Anal. Chem., 2002, 74, 1915.

    Article  CAS  PubMed  Google Scholar 

  79. M. Kato, N. Matsumoto, K. Sakai-Kato, and T. Toyo’oka, J. Pharm. Biomed. Anal., 2003, 30, 1845.

    Article  CAS  PubMed  Google Scholar 

  80. K. Sakai-Kato, M. Kato, H. Nakakuki, and T. Toyo’oka, J. Pharm. Biomed. Anal., 2003, 31, 299.

    Article  CAS  PubMed  Google Scholar 

  81. K. Sakai-Kato, M. Kato, and T. Toyo’oka, Anal. Chem., 2002, 74, 2943.

    Article  CAS  PubMed  Google Scholar 

  82. K. Sakai-Kato, M. Kato, and T. Toyo’oka, Anal. Biochem., 2002, 308, 278.

    Article  CAS  PubMed  Google Scholar 

  83. K. Sakai-Kato, M. Kato, and T. Toyo’oka, J. Chromatogr., A, 2004, 1051, 261.

    Article  CAS  PubMed  Google Scholar 

  84. M. T. Dulay, Q. J. Baca, and R. N. Zare, Anal. Chem., 2005, 77, 4604.

    Article  CAS  PubMed  Google Scholar 

  85. M. Kato, K. Sakai-Kato, H.-M. Jin, K. Kubota, H. Miyano, T. Toyo’oka, M. T. Dulay, and R. N. Zare, Anal. Chem., 2004, 76, 1896.

    Article  CAS  PubMed  Google Scholar 

  86. F. Qin, C. Xie, S. Feng, J. Ou, L. Kong, M. Ye, and H. Zou, Electrophoresis, 2006, 27, 1050.

    Article  CAS  PubMed  Google Scholar 

  87. X. Xu, X. Wang, Y. Liu, B. Liu, H. Wu, and P. Yang, Rapid Commun. Mass Spectrom., 2008, 22, 1257.

    Article  CAS  PubMed  Google Scholar 

  88. Y. D. Kim, C. B. Park, and D. S. Clark, Biotechnol. Bioeng., 2001, 73, 331.

    Article  CAS  PubMed  Google Scholar 

  89. K. Sakai-Kato, M. Kato, and T. Toyo’oka, Anal. Chem., 2003, 75, 388.

    Article  CAS  PubMed  Google Scholar 

  90. T. Liu, S. Wang, and G. Chen, Talanta, 2009, 77, 1767.

    Article  CAS  PubMed  Google Scholar 

  91. Y. Li, B. Yan, C. Deng, W. Yu, X. Xu, P. Yang, and X. Zhang, Proteomics, 2007, 7, 2330.

    Article  CAS  PubMed  Google Scholar 

  92. J. M. Lebert, E. M. Forsberg, and J. D. Brennan, Biochem. Cell Biol., 2008, 86, 100.

    Article  CAS  PubMed  Google Scholar 

  93. D. Avnir, T. Coradin, O. Lev, and J. Livage, J. Mater. Chem., 2006, 16, 101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Sakai-Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai-Kato, K., Ishikura, K. Integration of Biomolecules into analytical Systems by Means of Silica Sol-Gel Technology. ANAL. SCI. 25, 969–978 (2009). https://doi.org/10.2116/analsci.25.969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.969

Navigation