Skip to main content
Log in

Determination of Indole-3-Acetic Acid in Soil Using Excitation–Emission Matrix Fluorescence with Trilinear Decomposition-based Calibration Methods

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Indole-3-acetic acid (IAA) is a phytohormone of the auxin group and is capable of coordinating the overall processes of plant growth and development. IAA is active in the very low concentration range. Therefore, it is important to quantify IAA in the low concentration range in complex system. In this work, a new spectrofluorometric method for the direct determination of IAA in soil is proposed and discussed. It combines the fluorescence excitation–emission matrices (EEMs) with second-order calibration methods based on the alternating trilinear decomposition (ATLD) algorithm and the self-weighed alternating trilinear decomposition (SWATLD) algorithm. These methodologies fully exploit the second-order advantage of the three-way fluorescence data, allowing the analyte concentrations to be quantified even in the presence of unknown fluorescent interferents. IAA recoveries in soil were determined as 100.6 ± 3.0 and 96.9 ± 1.1% with ATLD and SWATLD, respectively. The limits of detection obtained were 17.6 and 4.6 ng mL−1, and the limits of quantification were 52.9 and 13.9 ng mL−1 with ATLD and SWATLD, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Calatayud, J. G. de Ascenção, and J. R. Albert-García, J. Fluoresc., 2006, 1, 61.

    Article  Google Scholar 

  2. D. Carić, V. Tomišić, M. Kveder, N. Galić, G. Pifat, V. Magnus, and M. Šoškić, Biophys. Chem., 2004, 111, 247.

    Article  PubMed  Google Scholar 

  3. K. V. Thimann, “Hormone Action in the Whole Life of Plants”, 1977, The University of Massachusetts Press, Amherst.

  4. R. A. de Toledo and C. M. P. Vaz, Microchem. J., 2007, 86, 161.

    Article  Google Scholar 

  5. E. A. Schneider and F. Wightman, Annu. Rev. Plant Physiol., 1974, 25, 487.

    Article  CAS  Google Scholar 

  6. M. Lebuhn and A. Hartmann, J. Chromatogr., 1993, 629, 255.

    Article  CAS  Google Scholar 

  7. J. Li, L. T. Xiao, G. M. Zeng, G. H. Huang, G. L. Shen, and R. Q. Yu, Anal. Chim. Acta, 2003, 494, 177.

    Article  CAS  Google Scholar 

  8. M. P. De Mello, S. M. De Toledo, M. Haun, G. Cilento, and N. DurBn, Biochemistry, 1980, 19, 5270.

    Article  CAS  PubMed  Google Scholar 

  9. A. Bertuzzi, G. Mingrone, A. Gandolfi, A. V. Greco, S. Ringoir, and R. Vanholder, Clin. Chim. Acta, 1997, 265, 183.

    Article  CAS  PubMed  Google Scholar 

  10. A. V. Greco, G. Mingrone, A. Favuzzi, A. Bertuzzi, A. Gandolfi, R. DeSmet, R. Vanholder, and G. Gasparrini, J. Investig. Med., 2000, 48, 274.

    CAS  PubMed  Google Scholar 

  11. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka, Br. J. Pharmacol., 2000, 35, 555.

    Google Scholar 

  12. A. S. Carretero, C. Cruces-Blanco, M. S. Peña, S. C. Ramíarez, and A. F. Gutiérrez, J. Agric. Food Chem., 2004, 52, 1419.

    Article  CAS  Google Scholar 

  13. L. River and A. Crozier, “Principles and Practice of Hormone Analysis”, 1987, Academic Press, London.

  14. E. W. Weiler, Rev. Plant Physiol., 1984, 35, 85.

    Article  CAS  Google Scholar 

  15. E. W. Weiler, J. Eberle, R. Mertens, R. Atzon, M. Feyerabend, P. S. Jordan, A. Arnscheidt, and U. Wieczorek, “Immunology in Plant Science”, 1986, Cambridge Press, Cambridge.

  16. A. Durgbanshi, V. Arbona, O. Pozo, O. Miersch, J. V. Sancho, and A. Gómez-Cadenas, J. Agric. Food Chem., 2005, 53, 8437.

    Article  CAS  PubMed  Google Scholar 

  17. K. Hoenicke, T. J. Simat, H. Steinhart, H. J. Köhler, and A. Schwab, J. Agric. Food Chem., 2001, 49, 5494.

    Article  CAS  PubMed  Google Scholar 

  18. E. Vermeer, E. Knegt, and J. Bruinsma, J. Chromatogr., A, 1986, 362, 430.

    Article  Google Scholar 

  19. A. L. Xia, H. L. Wu, D. M. Fang, Y. J. Ding, L. Q. Hu, and R. Q. Yu, Anal. Sci., 2006, 22, 1189.

    Article  CAS  PubMed  Google Scholar 

  20. G. M. Escandar, N. M. Faber, H. C. Goicoechea, A. M. de la Peña, A. C. Olivieri, and R. J. Poppi, Trends Anal. Chem., 2007, 26, 752.

    Article  CAS  Google Scholar 

  21. H. L. Wu, M. Shibukawa, and K. Oguma, J. Chemom., 1998, 12, 1.

    Article  CAS  Google Scholar 

  22. Z. P. Chen, H. L. Wu, J. H. Jiang, Y. Li, and R. Q. Yu, Chemom. Intell. Lab. Syst., 2000, 52, 75.

    Article  Google Scholar 

  23. R. A. Harshman, UCLA Working Papers in Phonetics, 1970, 16, 1.

    Google Scholar 

  24. A. L. Xia, H. L. Wu, D. M. Fang, Y. J. Ding, L. Q. Hu, and R. Q. Yu, J. Chemom., 2005, 19, 65.

    Article  CAS  Google Scholar 

  25. Y. Zhang, H. L. Wu, A. L. Xia, S. H. Zhu, Q. J. Han, and R. Q. Yu, Anal. Bioanal. Chem., 2006, 386, 1741.

    Article  CAS  PubMed  Google Scholar 

  26. S. H. Zhu, H. L. Wu, A. L. Xia, Q. J. Han, Y. Zhang, and R. Q. Yu, Talanta, 2008, 74, 1579.

    Article  CAS  PubMed  Google Scholar 

  27. M. M. Galera, M. D. G. García, and H. C. Goicoechea, Trends Anal. Chem., 2007, 26, 1032.

    Article  CAS  Google Scholar 

  28. A. M. de la Peña, A. E. Mansilla, N. M. Díez, D. B. Gil, A. C. Olivieri, and G. M. Escandar, Appl. Spectrosc., 2006, 60, 330.

    Article  Google Scholar 

  29. J. A. Arancibia and G. M. Escandar, Anal. Chim. Acta, 2007, 584, 287.

    Article  CAS  PubMed  Google Scholar 

  30. J. Christensena, E. M. Beckerb, and C. S. Frederiksenb, Chemom. Intell. Lab. Syst., 2005, 75, 201.

    Article  Google Scholar 

  31. P. P. Mortensen and R. Bro, Chemom. Intell. Lab. Syst., 2006, 84, 106.

    Article  CAS  Google Scholar 

  32. R. D. Holbrook, J. H. Yen, and T. J. Grizzard, Sci. Total Environ., 2006, 361, 249.

    Article  CAS  PubMed  Google Scholar 

  33. L. Q. Hu, H. L. Wu, Y. J. Ding, D. M. Fang, A. L. Xia, and R. Q. Yu, Chemom. Intell. Lab. Syst., 2006, 82, 145.

    Article  CAS  Google Scholar 

  34. J. A. Arancibia and G. M. Escandar, Talanta, 2003, 60, 1113.

    Article  CAS  PubMed  Google Scholar 

  35. J. F. Nie, H. L. Wu, A. L. Xia, S. H. Zhu, Y. C. Biao, S. F. Li, and R. Q. Yu, Anal. Sci., 2007, 23, 1377.

    Article  CAS  PubMed  Google Scholar 

  36. A. G. González, M. A. Herrador, and A. G. Asuero, Talanta, 1999, 48, 729.

    Article  PubMed  Google Scholar 

  37. A. Lorber, Anal. Chem., 1986, 58, 1167.

    Article  CAS  Google Scholar 

  38. N. M. Faber, J. Chemom., 2001, 15, 743.

    Article  CAS  Google Scholar 

  39. A. C. Olivieri, Anal. Chem., 2005, 77, 4936.

    Article  CAS  PubMed  Google Scholar 

  40. R. Boqué, J. Ferré, N. M. Faber, and F. X. Rius, Anal. Chim. Acta, 2002, 451, 313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Long Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YN., Wu, HL., Zhu, SH. et al. Determination of Indole-3-Acetic Acid in Soil Using Excitation–Emission Matrix Fluorescence with Trilinear Decomposition-based Calibration Methods. ANAL. SCI. 25, 83–88 (2009). https://doi.org/10.2116/analsci.25.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.83

Navigation