Skip to main content

Advertisement

Log in

Voltammetric Determination of In3+ Based on the Bifunctionality of a Multi-walled Carbon Nanotubes-Nafion Modified Electrode

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In3+ has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In3+ in a 0.01 M HAc–NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at –0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In3+. A good linear relationship between the stripping peak currents and the In3+ concentration is obtained, covering the concentration range from 5.0 × 10–10 to 2.0 × 10–7 M, with a correlation coefficient of 0.999; the detection limit is 1.0 × 10–11 M. This proposed method has been applied to detect In3+ as a new way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. He and C. S. Toh, Anal. Chim. Acta, 2005, 556, 1.

    Article  Google Scholar 

  2. J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Anal. Chem., 2002, 74, 1993.

    Article  CAS  Google Scholar 

  3. C. Y. Liu, A. J. Bard, and F. Wuld, Electrochem. Solid-State Lett., 1999, 2, 577.

    Article  CAS  Google Scholar 

  4. L. D. Zhu, R. L. Yang, J. L. Zhai, and C. Y. Tian, Biosens. Bioelectron., 2007, 23, 528.

    Article  CAS  Google Scholar 

  5. J. Hong, H. Ghourchian, and A. A. Moosavi-Movahedi, Electrochem.commun., 2006, 8, 1572.

    Article  CAS  Google Scholar 

  6. J. Wang and M. Musameh, Anal. Chem., 2003, 75, 2075.

    Article  CAS  Google Scholar 

  7. A. Salimi, R. G.compton, and R. Hallaj, Anal. Biochem., 2004, 333, 49.

    Article  CAS  Google Scholar 

  8. K. Balasubramanian and M. Burhard, Anal. Bioanal. Chem., 2006, 385, 452.

    Article  CAS  Google Scholar 

  9. M. Musameh, J. Wang, A. Merkoci, and Y. Lin, Electrochem.commun., 2002, 4, 743.

    Article  CAS  Google Scholar 

  10. C. X. Cai and J. Chen, Anal. Biochem., 2004, 325, 285.

    Article  CAS  Google Scholar 

  11. D. Sun, X. F. Xie, Y. P. Cai, H. J. Zhang, and K. B. Wu, Anal. Chim. Acta, 2007, 581, 27.

    Article  CAS  Google Scholar 

  12. J. Yang and N. Hu, Bioelectrochem. Bioenerg., 1999, 48, 117.

    Article  CAS  Google Scholar 

  13. R. H. Baughman, A. Zakhidov, and W. A. de Heer, Science, 2002, 297, 787.

    Article  CAS  Google Scholar 

  14. C. N. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, ChemPhysChem, 2001, 2, 78.

    Article  CAS  Google Scholar 

  15. D. R. Shobha Jeykumari, S. Ramaprabhu, and S. Sriman Narayanan, Carbon, 2007, 45, 1340.

    Article  Google Scholar 

  16. A. Star, J. S. Stoddart, D. Streuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, and J. R. Heath, Angew. Chem., Int. Ed., 2001, 40, 1721.

    Article  CAS  Google Scholar 

  17. S. Shahrokhian and H. R. Zeza-Mehrjardi, Eletctrochim. Acta, 2007, 52, 6310.

    Article  CAS  Google Scholar 

  18. A. Salimi, R. G.compton, and R. Hallaj, Anal. Biochem., 2004, 333, 49.

    Article  CAS  Google Scholar 

  19. A. Profumo, M. Fagnoni, D. Merli, E. Quartarone, S. Protti, D. Dondi, and A. Albini, Anal. Chem., 2006, 78, 4194.

    Article  CAS  Google Scholar 

  20. M. J. O’Connell, P. Poul, L. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tpur, D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 2001, 342, 265.

    Article  Google Scholar 

  21. C. H. Lee, S. C. Wang, C. J. Yuan, M. F. Wen, and K. S. Chang, Biosens. Bioelectron., 2007, 22, 877.

    Article  CAS  Google Scholar 

  22. Y. Z. Song, Spectrochim. Acta, Part A, 2007, 67, 1169.

    Article  Google Scholar 

  23. A. Star, J. S. Stoddart, D. Streuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi, and J. R. Health, Angew. Chem., Int. Ed., 2001, 40, 1721.

    Article  CAS  Google Scholar 

  24. J. Giggs, Z. Guo, D. Carrol, and Y. Sun, J. Am. Chem. Soc., 2000, 122, 5879.

    Article  Google Scholar 

  25. Y. Sun, K. Wu, and S. Hu, Chem. J. Chin. Univ., 2002, 23, 2067.

    CAS  Google Scholar 

  26. C. Hu, S. Yuan, and S. Hu, Electrochim. Acta, 2006, 51, 3013.

    Article  CAS  Google Scholar 

  27. Z. Fan and D. J. Harrison, Anal. Chem., 1992, 64, 1304.

    Article  CAS  Google Scholar 

  28. G. Fortier, M. Vaillancourt, and D. Belanger, Electroanalysis, 1992, 4, 275.

    Article  CAS  Google Scholar 

  29. W. J. Vining and T. J. Meyer, J. Electroanal. Chem., 1987, 237, 191.

    Article  CAS  Google Scholar 

  30. C. R. Martin, I. Rubinstein, and A. J. Bard, J. Am. Chem. Soc., 1982, 104, 4817.

    Article  CAS  Google Scholar 

  31. D. Sun, X. F. Xie, Y. P. Cai, H. J. Zhang, and K. B. Wu, Anal. Chim. Acta, 2007, 581, 27.

    Article  CAS  Google Scholar 

  32. T. Malinski and Z. Taha, Nature, 1992, 358, 676.

    Article  CAS  Google Scholar 

  33. Y. B. Wang, Z. Iqbal, and S. Mitra, Carbon, 2005, 43, 1015.

    Article  CAS  Google Scholar 

  34. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, and P. C. Eklund, Science, 1998, 282, 95.

    Article  CAS  Google Scholar 

  35. H. X. Luo, Z. J. Shi, N. Q. Li, Z. Gu, and Q. K. Zhuang, Anal. Chem., 2001, 73, 915.

    Article  CAS  Google Scholar 

  36. F. H. Wu, G. C. Zhao, and X. W. Wei, Electrochem.commun., 2002, 4, 690.

    Article  CAS  Google Scholar 

  37. C. E. Banks, T. J. Davies, G. G. Wildgoose, and R. G.compton, Chem.commun., 2005, 7, 829.

    Article  Google Scholar 

  38. P. J. Britto, K. S. V. Santhanam, and P. M. Ajayan, Bioelectrochem. Bioenerg., 1996, 41, 121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, F., Wang, J. et al. Voltammetric Determination of In3+ Based on the Bifunctionality of a Multi-walled Carbon Nanotubes-Nafion Modified Electrode. ANAL. SCI. 25, 653–657 (2009). https://doi.org/10.2116/analsci.25.653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.653

Navigation