Skip to main content
Log in

Radiostability of Florfenicol in the solid state

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The effect of ionizing radiation on florfcnicol (FF), an antibiotic with wide antibacterial properties was investigated to determine whether it can be sterilized using high-energy radiation. FF was irradiated by E-beam radiation to doses ol 25 – 8(X) kGy, and then changes in the physico-chemical properties were examined using chromatographic methods (TLC and HPLC), spectroscopic methods (NMR and MS) and hyphenated methods (HPLC-MS). It was found that a standard sterilizing dose of 25 kGy led to the formation of two new products of radiolysis as well as lowering the content of FF by 0.95%. With higher doses of radiation, the content of FF further decreased (by 12.27% with a dose of 800 kGy). and new products of radiolysis appeared (up to five with a dose of 800 kGy). However, there were no differences between the NMR and MS spectra o( irradiated and non-irradiated samples of FF. A linear dependence was found between the dose of radiation and the FF content (correlation coefficient of 0.9951) as well as between the melting point and the sum ol products of radiolysis (correlation coefficient of 0.9975). It was found that a radiodegradation of FF took place by the breaking of an amide bond, leading to the formation of an aliphatic amine, which was subsequently oxidized to 4-methylsulfonylbenzoic acid. The radiolytic yield for the radiodegradation of FF was calculated to be 10.24 molecules/100 eV for a dose of 25 kGy. As a result of our investigation, we can conclude that FF shows a reasonably good radiostability in the range of doses used for sterilization, i.e. 25 kGy and below, and therefore it can be sterilized using high-energy radiation without changing its physicochemical, properties and hence its therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Sams, in Proceedings of the XVIII World Buiatrics Congress, 1994, Bologna, 13.

  2. F. Schlunzen, R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R. Albrecht, and A. Yonath, Nature, 2001, 413, 814.

    Article  CAS  PubMed  Google Scholar 

  3. O. A. Mascaretti, “Bacteria versus Antimicrobial Agents, an Integrated Approach”, 2003, ASM Press, Washington D.C.

  4. S. Schwarz, C. Kehrenberg, B. Doublet, and A. Cloeckaert, FEMS Microbiol. Rev., 2004, 28, 519.

    Article  CAS  PubMed  Google Scholar 

  5. European Pharmacopoeia, 5th ed., 2002, Council of Europe, Strasburg.

  6. B. Marciniec and K. Dettlaff, in “Trends in Radiation Sterilization of Health Care Products”, 2008, IAEA, Vienna, 187.

  7. W. Bögl, Radiat. Phys. Chem., 1985, 25, 425.

    Google Scholar 

  8. M. P. Kane and K. Tsuji, J. Pharm. Sci., 1983, 72, 30.

    Article  CAS  PubMed  Google Scholar 

  9. C. Larsen and H. Bundagaard, J. Chromatogr., 1978, 147, 143.

    Article  CAS  Google Scholar 

  10. N. Barbarian, A. S. Crucq, and B. Tilquin, Radiat. Phys. Chem., 1996, 48, 787.

    Article  Google Scholar 

  11. N. Barbarian, B. Tilquin, and E. De Hoffman, J. Chromatogr., A, 2001, 929, 51.

    Article  Google Scholar 

  12. K. Dettlaff, A. Tężyk, B. Marciniec, R. Wachowiak, M. Naskrent, and B. Bednarek, Chem. Anal., 2008, 53, 171.

    CAS  Google Scholar 

  13. B. Marciniec, M. Stawny, M. Hofman, and M. Naskrent, J. Therm. Anal. Calorim., 2008, 93, 733.

    Article  CAS  Google Scholar 

  14. M. H. Vega, E. T. Jara, and M. B. Aranda, J. Planar Chromatogr., 2006, 19, 204.

    Article  CAS  Google Scholar 

  15. B. Marciniec, K. Dettlaff, and M. Naskrent, J. Pharm. Biomed. Anal., 2009, 50, 675.

    Article  CAS  PubMed  Google Scholar 

  16. V. Hormazabal, I. Steffenak, and M. Yndestad, J. Chromatogr., A, 1996, 724, 364.

    Article  CAS  Google Scholar 

  17. L. Hong, A. Horni, M. Hesse, and H. Altorfer, Chromatographia, 2002, 55, 13.

    Article  CAS  Google Scholar 

  18. B. Marciniec, M. Stawny, and P. Kachlicki, to be published.

  19. B. Marciniec, M. Kozak, M. Naskrent, K. Dettlaff, M. Ogrodowczyk, M. Stawny, and L. Wachowski, J. Therm. Anal. Calorim., 2007, 88, 337.

    Article  CAS  Google Scholar 

  20. B. Marciniec, M. Stawny, M. Kozak, and M. Naskrent, Spectrochim. Acta, Part A, 2008, 69, 865.

    Article  CAS  Google Scholar 

  21. P. Z. Zagórski, “Sterylizacja Radiacyjna”, 2007, IChTJ, Warsaw.

  22. B. J. Mincher and R. D. Curry, Appl. Radiat. Isot., 2000, 52, 189.

    Article  CAS  PubMed  Google Scholar 

  23. S. Yu, B. Lee, M. Lee, I. H. Cho, and S. W. Chang, Chemosphere, 2008, 71, 2106.

    Article  CAS  PubMed  Google Scholar 

  24. D. W. Kim, K. C. Han, W. K. Lee, and S. K. Ihm, Radiat. Phys. Chem., 1996, 48, 651.

    Article  CAS  Google Scholar 

  25. Z. P. Zagórski, Radiat. Phys. Chem., 1999, 56, 559.

    Article  Google Scholar 

  26. M. Gibella and B. Tilquin, Analysis, 1999, 27, 657.

    CAS  Google Scholar 

  27. D. E. Holt, R. Hurley, and D. Harvey, J. Antimicrob. Chemother., 1995, 35, 115.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Marciniec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marciniec, B., Stawny, M., Kachlicki, P. et al. Radiostability of Florfenicol in the solid state. ANAL. SCI. 25, 1255–1260 (2009). https://doi.org/10.2116/analsci.25.1255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.1255

Navigation