Skip to main content
Log in

Effect of the Chemical Species of Arsenic on Sensitivity in Graphite Furnace Atomic Absorption Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The sensitivity of graphite furnace atomic absorption spectrometry (GFAAS) to arsenobetaine (AB) was 1.3-times higher than to inorganic As. In order to understand the mechanism underlying this observation, the atomization processes for both chemical species were investigated in terms of the enthalpy change (AH) during the atomization process in GFAAS. The enthalpy change of AB was slightly lower than that of inorganic As, which suggested that AB was atomized more efficiently than was inorganic As. Moreover, it was observed that some co-existing organic materials enhanced the analytical sensitivity of inorganic As. The sensitivity difference between inorganic As and AB depended upon the mechanisms of their atomization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO Guidelines for Drinking Water Quality, 2003, World Health Organisation.

  2. Environmental Health Criteria 224 Arsenic and Arsenic Compounds”, 2nd ed., 2001, World Health Organisation, Geneva, 168.

  3. The Arsenic in Food Regulation 1959 SI number 831 (UK Government)”, Food Standard Agency.

  4. J. Entwisle and R. Hearn, Spectrochim. Acta, Part B, 2006, 61, 438.

    Article  Google Scholar 

  5. T. Narukawa, T. Kuroiwa, K. Inagaki, A. Takatsu, and K. Chiba, Appl. Organomet. Chem., 2005, 19, 239.

    Article  CAS  Google Scholar 

  6. K. Jin, H. Ogawa, and M. Taga, Bunseki Kagaku, 1983, 32, E171.

    Article  CAS  Google Scholar 

  7. K. Jin, H. Ogawa, and M. Taga, Bunseki Kagaku, 1983, 32, E259.

    Article  CAS  Google Scholar 

  8. T. Narukawa, T. Kuroiwa, T. Yarita, and K. Chiba, Appl. Organomet Chem., 2006, 20, 565.

    Article  CAS  Google Scholar 

  9. D. Beauchemin, J. Anal. At. Spectrom., 1998, 13, 1.

    Article  CAS  Google Scholar 

  10. M. Deaker and W. Maher, J. Anal. At. Spectrom., 1999, 14, 1193.

    Article  CAS  Google Scholar 

  11. P. Vinas, M. Pardo-Martfnez, and M. Hernandez-Cordoba, J. Anal. At. Spectrom., 1999, 14, 1215.

    Article  CAS  Google Scholar 

  12. L. F. R. Machado, A. O Jacintho, A. A. Menegário, E. A. G. Zagatto, and M. F. Giné, J. Anal. At. Spectrom., 1998, 13, 1343.

    Article  CAS  Google Scholar 

  13. W. Goessler, D. Kuehnelt, C. Schiagenhaufen, Z. Slejkovec, and K. J. Irgolic, J. Anal. At. Spectrom., 1998, 13, 183.

    Article  CAS  Google Scholar 

  14. W. Goessler and M. Pavkov, Analyst, 2003, 128, 796.

    Article  CAS  PubMed  Google Scholar 

  15. M. Wasilewska, W. Goessler, M. Zischka, B. Maichin, and G. Knapp, J. Anal. At. Spectrom., 2002, 17, 1121.

    Article  CAS  Google Scholar 

  16. J. Bowman, B. Fairman, and T. Catterick, J. Anal. At. Spectrom., 1997, 72, 313.

    Article  Google Scholar 

  17. Z. Mester and R. E. Sturgeon, J. Anal. At. Spectrom., 2001, 16, 470.

    Article  CAS  Google Scholar 

  18. O. Mufioz, D. Vėlez, R. Montoro, A. Arroyo, and M. Zamorano, J. Anal. At. Spectrom., 2000, 75, 75.

    Google Scholar 

  19. E. H. Larsen, G. A. Pedersen, and J. W. Mclaren, J. Anal. At. Spectrom., 1997, 72, 72.

    Google Scholar 

  20. M. A. Castro, C. Garcfa-Olalla, L. C. Robles, and A. J. Aller, Spectrochim. Acta, Part B, 2002, 57, 1.

    Article  Google Scholar 

  21. Y. Cai, M. Georgiadis, and J. W. Fourqurean, Spectrochim. Acta, Part B, 2000, 55, 1411.

    Article  Google Scholar 

  22. P. N. Fedorov, G. N. Ryabchuk, and A. V. Zverev, Spectrochim. Acta, Part B, 1997, 52, 1517.

    Article  Google Scholar 

  23. A. A. Menegário and M. F. Giné, Spectrochim. Acta, Part B, 2000, 55, 355.

    Article  Google Scholar 

  24. L. L. Yu, T. A. Butler, and G. C. Turk, Anal. Chem., 2006, 78, 1651.

    Article  CAS  PubMed  Google Scholar 

  25. S. Imai and Y. Hayashi, Anal. Chem., 1991, 63, 772.

    Article  CAS  Google Scholar 

  26. S. Imai and Y. Hayashi, Bull. Chem. Soc. Jpn., 1992, 65, 871.

    Article  CAS  Google Scholar 

  27. S. Imai, K. Okuhara, T. Tanaka, Y. Hayashi, and E. Saito, J. Anal. At. Spectrom., 1995, 10, 37.

    Article  CAS  Google Scholar 

  28. S. Imai, N. Hasegawa, Y. Hayash, and K. Saito, J. Anal. At. Spectrom., 1996, 77, 515.

    Article  Google Scholar 

  29. S. Imai, N. Hasegawa, Y. Nishiyama, Y. Hayashi, and K. Saito, J. Anal. At. Spectrom., 1996, 77, 77.

    Google Scholar 

  30. S. Imai, M. Minezaki, Y. Hayashi, and C. Jindoh, Anal. Sci., 1997, 13, 127.

    Article  CAS  Google Scholar 

  31. T. Narukawa, T. Kuroiwa, and K. Chiba, Talanta, 2007, 73, 157.

    Article  CAS  PubMed  Google Scholar 

  32. D. R. Lide, “CRC Handbook of Chemistry and Physics”, 85th ed., 2004, Chap. 9, Taylor & Francis CRC Press, ISBN 0849304857, 9–51.

    Google Scholar 

  33. S. Imai, Y. Ito, M. Tani, A. Yonetani, Y. Nishiyama, and Y. Hayashi, Anal. Sci., 2000, 16, 1189.

    Article  CAS  Google Scholar 

  34. T. Itoh, H. Shimomura, Y. Nishiyama, and S. Imai, Bunseki Kagaku, 2005, 7, 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Narukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narukawa, T., Kuroiwa, T., Narushima, I. et al. Effect of the Chemical Species of Arsenic on Sensitivity in Graphite Furnace Atomic Absorption Spectrometry. ANAL. SCI. 24, 355–360 (2008). https://doi.org/10.2116/analsci.24.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.355

Navigation