Skip to main content
Log in

Electrochemical Behavior of Ascorbic Acid at a 2,2'-[3,6-Dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone Carbon Paste Electrode

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Electrocatalytic oxidation of ascorbic acid (AA) at a carbon paste electrode, chemically modified 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone, was thoroughly investigated. The results of cyclic voltammetry, double potential-step chronoamperometry, linear sweep voltammetry and differential pulse voltammetry (DPV) studies were used for the prediction of the mechanism of electrochemical oxidation of AA mediated with 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone at the surface of the modified electrode. The diffusion coefficient (D = 2.45 × 10-5 cm2 s-1) and the kinetic parameters such as the electron transfer coefficient (α = 0.34) were also determined. The results of DPV using the 2,2'-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone-modified electrode were applied in a highly sensitive determination of AA in drug samples. A linear range of 3.0 × 10-6 – 1.2 × 10-4 M and the detection limit (3σ) 3.8 × 10-7 M were obtained for DPV determination of AA in buffered pH 7.00 solutions (0.1 M phosphate buffer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Arriogori and C. D. Tullio, Biochim. Biophys. Acta, 2002, 1569, 1.

    Article  Google Scholar 

  2. L. R. Faulkner, Chem. Eng. News, 1984, 62, 27.

    Article  Google Scholar 

  3. D. W. Martin, Jr., in “Harper’s Review of Biochemistry”, ed. D. W. Martin, Jr., P. A. Mayes, and V. W. Rodwell, 19th ed., 1983, Lange, Los Altos, CA, 112.

    Google Scholar 

  4. L. A. Pachla, D. L. Reynolds, and P. T. Kissinger, J. Assoc. Off. Anal. Chem., 1985, 68, 1.

    CAS  PubMed  Google Scholar 

  5. V. S. Ijeri, P. V. Jaiswal, and A. K. Srivastava, Anal. Chim. Acta, 2001, 439, 291.

    Article  CAS  Google Scholar 

  6. A. M. Yu, H. L. Zhang, and H. Y. Chen, Electroanalysis, 1997, 9, 788.

    Article  CAS  Google Scholar 

  7. J. B. Raoof, R. Ojani, R. Hosseinzadeh, and V. Ghasemi, Anal. Sci., 2003, 19, 1251.

    Article  CAS  Google Scholar 

  8. I. G. Casella and M. R. Guascito, Electroanalysis, 1997, 9, 1381.

    Article  CAS  Google Scholar 

  9. T. Selvaraju and R. Ramaraj, Electrochem. Commun., 2003, 5, 667.

    Article  CAS  Google Scholar 

  10. Z. U. Bae, J. H. Lee, H. Y. Chang, and S. H. Lee, Anal. Sci., 1999, 15, 795.

    Article  CAS  Google Scholar 

  11. C. X. Cai, K. H. Xue, and S. M. Xu, J. Electroanal. Chem., 2000, 486, 111.

    Article  CAS  Google Scholar 

  12. B. Nalini and S. Narayanan, Anal. Chim. Acta, 2000, 405, 93.

    Article  CAS  Google Scholar 

  13. R. E. Sabzi and M. H. Pournaghi-Azar, Anal. Sci., 2005, 21, 689.

    Article  CAS  Google Scholar 

  14. Z. Guorong, W. Xiaolei, S. Xingwang, and S. Tianling, Talanta, 2000, 51, 1019.

    Article  CAS  Google Scholar 

  15. M. H. Pournaghi-Azar and R. Ojani, Talanta, 1995, 42, 1839.

    Article  CAS  Google Scholar 

  16. J. B. Raoof, R. Ojani, and A. Kiani, J. Electroanal. Chem., 2001, 515, 45.

    Article  CAS  Google Scholar 

  17. C. Fang, X. Tang, and X. Zhou, Anal. Sci., 1999, 15, 41.

    Article  CAS  Google Scholar 

  18. A. S. N. Murthy and J. Sharma, Talanta, 1998, 45, 951.

    Article  CAS  Google Scholar 

  19. X. Han, J. Tang, J. Wang, and E. Wang, Electrochim. Acta, 2001, 46, 3367.

    Article  CAS  Google Scholar 

  20. M. Khorasani-Motlagh and M. Noroozifar, Anal. Sci., 2003, 19, 1671.

    Article  CAS  Google Scholar 

  21. P. J. O’Connell, C. Gormally, M. Pravda, and G. G. Guilbault, Anal. Chim. Acta, 2001, 431, 239.

    Article  Google Scholar 

  22. J. M. Zen, A. S. Kumar, and D. M. Tsai, Electroanalysis, 2003, 15, 1073.

    Article  CAS  Google Scholar 

  23. T. H. Degefa, B. S. Chandravanshi, and H. Alemu, Electroanalysis, 1999, 11, 1305.

    Article  CAS  Google Scholar 

  24. U. S. Pharmacopeia XX, 1980, Mack Co., Easton, PA.

  25. E. Laviron, J. Electroanal. Chem., 1979, 101, 19.

    Article  CAS  Google Scholar 

  26. N. K. Pandey, Anal. Chem., 1982, 54, 793.

    Article  CAS  Google Scholar 

  27. K. Wang, J. Xu, K. Tang, and H. Chen, Talanta, 2005, 67, 798.

    Article  CAS  Google Scholar 

  28. S. Shahrokhian and M. Ghalkhani, Electrochim. Acta, 2006, 51, 2599.

    Article  CAS  Google Scholar 

  29. J. B. Raoof, R. Ojani, and S. Rashid-Nadimi, Electrochim. Acta, 2004, 49, 271.

    Article  CAS  Google Scholar 

  30. H. R. Zare, N. Nasirizadeh, and M. Mazloum Ardakani, J. Electroanal. Chem., 2005, 577, 25.

    Article  CAS  Google Scholar 

  31. S. Antoniadou, A. D. Jannakoudakis, and E. Theodoridou, Synth. Met., 1989, 30, 295.

    Article  CAS  Google Scholar 

  32. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, 2001, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum Ardakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taleat, Z., Ardakani, M.M., Naeimi, H. et al. Electrochemical Behavior of Ascorbic Acid at a 2,2'-[3,6-Dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone Carbon Paste Electrode. ANAL. SCI. 24, 1039–1044 (2008). https://doi.org/10.2116/analsci.24.1039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.1039

Navigation