Skip to main content
Log in

Determination of Trace Lithium in Uranium Compounds by Adsorption on Activated Alumina Using a Micro-column Method

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel method using a micro-column packed with active alumina as solid phase was proposed for separation of trace lithium from uranium compounds prior to determination. The method is based on a preliminary chromatographic separation of the total amount of uranium. This separation involves passing the solution containing sodium carbonate through active alumina and then eluting the trace lithium retained by the solid phase with a solution of sulfuric acid. Two modes, off-line and on-line micro-column preconcentration, were performed. In conjunction with atomic absorption spectrometry, this on-line preconcentration technique allows a determination of lithium at 10-9 level. Both off-line and on-line mode operation conditions were investigated in separation and determination of trace lithium by micro-column method (length of column bed, flow rate, etc.). The adsorption capacity of activated alumina was found to be 343 µg g-1 for lithium. Under the optimal operation condition, the detection limit (DL) of on-line preconcentration corresponding to three times the standard deviation of the blank (S/N = 3) was found to be 1.3 ng mL-1 and the RSD of this method is 3.32% (n = 5). The on-line calibration graph was linear over the range 20 - 200 ng mL-1. A good preconcentration factor 820 was achieved by experiment under the on-line mode. The developed method was applied to the analysis of trace lithium in nuclear grade uranium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Praveen, S. Daniel, T. P. Rao, S. Sampath, and K. S. Rao, Talanta, 2006, 70, 437.

    Article  CAS  PubMed  Google Scholar 

  2. D. C. Gerlach, D. E. H. J. B. Cliff, B. D. Reid, W. W. Little, G. H. Meriwether, A. J. Wickham, and T. A. Simmons, Appl. Surf. Sci., 2006, 252, 7041.

    Article  CAS  Google Scholar 

  3. N. L. Misra, K. D. S. Mudher, V. C. Adya, B. Rajeswari, and V. Venugopal, Spectrochim. Acta, Part B, 2005, 60, 834.

    Article  CAS  Google Scholar 

  4. O. P. O. Junior and J. E. S. Sarkis, J. Radioanal. Nucl. Chem., 2002, 254, 519.

    Article  Google Scholar 

  5. R. Zeisler and D. L. Donohue, J. Radioanal. Nucl. Chem., 1995, 194, 229.

    Article  CAS  Google Scholar 

  6. R. J. Rosenberg and R. Zilliacus, J. Radioanal. Nucl. Chem., 1993, 169, 113.

    Article  CAS  Google Scholar 

  7. M. A. Mahajan, M. V. R. Prasad, H. R. Mhatre, R. M. Sawant, R. K. Rastogi, G. H. Rizvi, and N. K. Chaudhuri, J. Radioanal. Nucl. Chem., 1991, 148, 93.

    Article  CAS  Google Scholar 

  8. L. Kosta and G. B. Cook, Talanta, 1965, 12, 977.

    Article  CAS  Google Scholar 

  9. I. P. Alimarin, A. Z. Miklishanskii, and Y. V. Yakovlev, J. Radioanal. Nucl. Chem., 1970, 4, 45.

    Article  CAS  Google Scholar 

  10. A. S. Al-Ammar, H. A. Hamid, B. H. Rashid, and H. M. Basheer, J. Chromatogr., A, 1991, 537, 287.

    Article  CAS  Google Scholar 

  11. B. Podobnik, J. K. In, and L. Kosta, Fresenius’ J. Anal. Chem., 1966, 218, 183.

    Google Scholar 

  12. M. Taddia and M. Mattioli, Inorg. Chim. Acta, 2007, 360, 1226.

    Article  CAS  Google Scholar 

  13. E. A. Huff, Spectrochim. Acta, Part B, 1987, 42, 275.

    Article  Google Scholar 

  14. R. Verma, J. Arunachalam, and S. Gangadharan, J. Radioanal. Nucl. Chem., 1992, 164, 327.

    Article  CAS  Google Scholar 

  15. C. Olivier, H. J. Morland, and B. S. D. Wet, J. Radioanal. Nucl. Chem., 1988, 123, 443.

    Article  CAS  Google Scholar 

  16. H. Hamzaoui, A. M’nif, and R. Rokbani, Talanta, 2006, 70, 847.

    Article  CAS  PubMed  Google Scholar 

  17. J. S. Becker and H.-J. Dietze, Fresenius’ J. Anal. Chem., 1999, 365, 429.

    Article  CAS  Google Scholar 

  18. X. Wen, P. Ma, G. Zhu, and Z. Wu, Rare Met., 2006, 25, 309.

    Article  CAS  Google Scholar 

  19. A. V. Flores, C. A. Pérez, and M. A. Z. Arruda, Talanta, 2004, 62, 619.

    Article  CAS  PubMed  Google Scholar 

  20. P. B. Tomascak, R. W. Carlson, and S. B. Shirey, Chem. Geol., 1999, 158, 145.

    Article  CAS  Google Scholar 

  21. P. S. Dahmi, B. L. Jangida, and M. Sundaresan, J. Radioanal. Nucl. Chem., 1990, 141, 437.

    Article  Google Scholar 

  22. M. T. Rodgers and P. B. Armentrout, Int. J. Mass Spectrom., 2007, I P.

  23. B. Swain, J. Jeong, J. Lee, and G. H. Lee, Hydrometallurgy, 2006, 84, 130.

    Article  CAS  Google Scholar 

  24. A. N. Krachak, V. A. Nikashina, S. A. Khainakov, and T. V. Stepanchenko, Russ. Chem. Bull., 1986, 35, 239.

    Article  Google Scholar 

  25. P. N. Nesterenko, P. A. Kebets, and K. O. Sochilina, J. Anal. Chem., 2003, 58, 467.

    Article  CAS  Google Scholar 

  26. M. Moldovan, M. M. Gómez, and M. A. Palacios, Anal. Chim. Acta, 2003, 478, 209.

    Article  CAS  Google Scholar 

  27. M. Howard, H. A. Jurbergs, and J. A. Holcombe, J. Anal. At. Spectrom., 1999, 14, 1209.

    Article  CAS  Google Scholar 

  28. C. Hang, B. Hu, Z. Jiang, and N. Zhang, Talanta, 2008, 74, 1699.

    Article  CAS  Google Scholar 

  29. M. Hiraide, J. Iwasawa, and H. Kawaguchi, Talanta, 1997, 44, 231.

    Article  CAS  PubMed  Google Scholar 

  30. M. C. Pannain and R. E. Santelli, Talanta, 1995, 42, 1609.

    Article  CAS  PubMed  Google Scholar 

  31. M. J. Marqués, A. Morales-Rubio, A. Salvador, and M. de la Guardia, Talanta, 2001, 53, 1229.

    Article  PubMed  Google Scholar 

  32. S. Kaneko and W. Takahashi, Colloids Surf., 1990, 47, 69.

    Article  CAS  Google Scholar 

  33. S. J. Yeh, J. M. Lo, and C. L. Tseng, J. Radioal. Nucl. Chem., 1998, 124, 157.

    Article  Google Scholar 

  34. E. Vassileva, B. Varimezova, and K. Hadjiivanov, Anal. Chim. Acta, 1996, 336, 141.

    Article  CAS  Google Scholar 

  35. L. Yang, B. Hu, Z. Jiang, and H. Pan, Mikrochim. Acta, 2004, 144, 227.

    Article  CAS  Google Scholar 

  36. T. Narukawa, J. Anal. At. Spectrom., 1999, 14, 75.

    Article  CAS  Google Scholar 

  37. I. B. Narin, M. Soylak, L. Elçi, and M. Dogan, Talanta, 2000, 52, 1041.

    Article  CAS  PubMed  Google Scholar 

  38. M. H. Khan, P. Warwick, and N. Evans, Chemosphere, 2006, 63, 1165.

    Article  CAS  PubMed  Google Scholar 

  39. S. Balakrishnan and D. Raghavan, J. Am. Oil Chem. Soc., 2003, 80, 503.

    Article  CAS  Google Scholar 

  40. G. Müller, M. Hoffmann, and R. Neeff, J. Mater. Sci., 1988, 23, 1779.

    Article  Google Scholar 

  41. Q. Pu, P. Liu, Q. Sun, and Z. Su, Microchim. Acta, 2003, 143, 45.

    Article  CAS  Google Scholar 

  42. K. P. Ska, P. Drzewicz, and M. Trojanowicz, Anal. Chim. Acta, 1998, 363, 141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-biao Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Mb., Li, Bp., Yang, Z. et al. Determination of Trace Lithium in Uranium Compounds by Adsorption on Activated Alumina Using a Micro-column Method. ANAL. SCI. 24, 1013–1017 (2008). https://doi.org/10.2116/analsci.24.1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.1013

Navigation