Skip to main content
Log in

Selective Determination of Tryptophan-containing Peptides through Precolumn Derivatization and Liquid Chromatography Using Intramolecular Fluorescence Resonance Energy Transfer Detection

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A selective and sensitive fluorometric determination method for native fluorescent peptides has been developed. This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the amino groups of tryptophan (Trp)-containing peptides. In this detection process, we monitored the FRET from the native fluorescent Trp moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 10 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated FRET most effectively. The OPA derivatives of the native fluorescent peptides emitted OPA fluorescence (445 nm) through an intramolecular FRET process when they were excited at the excitation maximum wavelength of the Trp-containing peptides (280 nm). The generation of FRET was confirmed through comparison with the analysis of a non-fluorescent peptide (C-reactive protein fragment (77–82)) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the Trp-containing peptides when performing LC on a reversed-phase column. The detection limits (signal-to-noise ratio = 3) for the Trp-containing peptides, at a 20-μL injection volume, were 41–180 fmol. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of the system that takes advantage of the conventional detection of OPA derivatives. Moreover, native non-fluorescent amines and peptides in the sample monitored at FRET detection are weaker than those of conventional fluorescence detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. River, R. McClintock, R. Galyean, and H. Anderson, J. Chromatogr., 1984, 303, 303.

    Article  Google Scholar 

  2. P. Schulz-Knappe, M. Raida, R. He, B. Kleemeier, R. Richter, M. Schrader, L. Stadker, and W. Forssmann, Regul. Pept., 1996, 64, 171.

    Google Scholar 

  3. S. Mousa and D. Couri, J. Chromatogr., 1983, 267, 267.

    Article  Google Scholar 

  4. H. Nakamura, C. L. Zimmerman, and J. J. Pisano, Anal. Biochem., 1979, 93, 93.

    Article  Google Scholar 

  5. T. Chikuma, Y. Ogura, M. Kasamatsu, K. Taguchi, K. Mitsui, T. Kato, and M. B. Aguilar, J. Chromatogr., B., 1999, 728, 59.

    Article  CAS  Google Scholar 

  6. W. Voelter and K. Zech, J. Chromatogr., 1975, 112, 112.

    Article  Google Scholar 

  7. M. Gozdowska and E. Kulczykowska, J. Chromatogr., A., 2004, 807, 229.

    CAS  Google Scholar 

  8. M. Nakano, M. Kai, M. Ohno, and Y. Ohkura, J. Chromatogr., 1987, 411, 411.

    Article  Google Scholar 

  9. M. Kai, E. Kojima, and Y. Ohkura, J. Chromatogr., 1993, 653, 653.

    Article  Google Scholar 

  10. M. Yoshitake, H. Nohta, H. Yoshida, T. Yoshitake, K. Todoroki, and M. Yamaguchi, Anal. Chem., 2006, 78, 78.

    Article  Google Scholar 

  11. J. R. Lakowicz, “Principles of Fluorescence Spectrometry”, 1999, Kluwer Academic, New York.

    Book  Google Scholar 

  12. G. A. Schoenenberger and M. Monnirer, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 74.

    Article  Google Scholar 

  13. M. V. Graf and A. J. Kastin, Peptide Rev., 1986, 7, 7.

    Google Scholar 

  14. F. Bes, W. Hofman, J. Schuur, and B. C. Van, Neuropsychobiology., 1992, 26, 193.

    Article  CAS  Google Scholar 

  15. E. Seifritz, M. J. Müller, G. A. Schönenberger, L. Trachsel, U. Hemmeter, M. Hatzinger, A. Ernst, P. Moore, and E. H. Trachsler, Peptide., 1995, 16, 1475.

    Article  CAS  Google Scholar 

  16. E. M. Khvatova, N. A. Rubanova, I. A. Prudchenko, and I. I. Mikhaleva, FEBS Lett., 1995, 368, 368.

    Article  Google Scholar 

  17. D. Bhattacharjee and F. D. Popp, J. Pharm. Sci., 1980, 69, 69.

    Article  Google Scholar 

  18. K. Imai, J. Chromatogr., 1975, 105, 105.

    Article  Google Scholar 

  19. P. M. Froehlich and T. D. Cunningham, Anal. Chim. Acta., 1978, 97, 357.

    Article  CAS  Google Scholar 

  20. K. Muramoto, H. Kamiya, and H. Kawauchi, Anal. Biochem., 1984, 141, 141.

    Article  Google Scholar 

  21. H. Tsuchiya, M. Tatsumi, N. Takagi, T. Koike, H. Yamaguchi, and T. Hayashi, Anal. Biochem., 1986, 155, 155.

    Article  Google Scholar 

  22. H. Miyano, T. Nakajima, and K. Imai, Biomed. Chromatogr., 1987, 2, 2.

    Article  Google Scholar 

  23. Y. F. Cheng and N. J. Dovichi, Science., 1988, 242, 562.

    Article  CAS  Google Scholar 

  24. T. Kawasaki, T. Higuchi, K. Imai, and O. S. Wong, Anal. Biochem., 1989, 180, 180.

    Article  Google Scholar 

  25. H. Yoshida, Y. Ohno, K. Todoroki, H. Nohta, and M. Yamaguchi, Anal. Sci., 2003, 19, 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Nohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshitake, M., Sejima, N., Yoshida, H. et al. Selective Determination of Tryptophan-containing Peptides through Precolumn Derivatization and Liquid Chromatography Using Intramolecular Fluorescence Resonance Energy Transfer Detection. ANAL. SCI. 23, 949–953 (2007). https://doi.org/10.2116/analsci.23.949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.949

Navigation