Skip to main content
Log in

Development of a Surface-Reaction System in a Nanoliter Droplet Made by an Ink-jet Microchip

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A surface-reaction system in a nanoliter water pool using an ink-jet microchip was developed. The reaction system in the nanodroplets formed on a poly(dimethylsiloxane) (PDMS) coated glass slide increased the diffusion-controlled reaction without using a nano-pump, specialized connector or highly sensitive detector. When nanoliter droplets were placed on the PDMS surface with a distance of 100 μm between them by the ink-jet microchip, the repeatabilities of the fluorescence intensity were 2.9% RSD (n = 7). The used ink-jet microchip had 4 different injection ports, and the distance between the ports was 0.995 mm. It was necessary to correct the distance in order to mix or dilute samples in a small droplet. The correction was successfully performed by moving the X-Y stage using inhouse-made software. A linear relationship was obtained between the Resorufin concentrations and the fluorescence intensity. We applied this system to an enzyme-linked immunosorbent assay (ELISA) for immunoglobulin A (IgA), and observed a difference in the fluorescence intensity derived from the amount of IgA (blank, 6.25 ng/mL, 12.5 ng/mL). These results show the usefulness of the open-type micro-analytical systems proposed by us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, Anal. Chem., 2002, 74, 2623.

    Article  CAS  Google Scholar 

  2. P. A. Auroux, D. Iossifidis, P. A. Auroux, and A. Manz, Anal. Chem., 2002, 74, 2637.

    Article  CAS  Google Scholar 

  3. J. P. Landers, Anal. Chem., 2003, 75, 2919.

    Article  CAS  Google Scholar 

  4. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem., 2004, 76, 3373.

    Article  CAS  Google Scholar 

  5. K. Uchiyama, H. Nakajima, and T. Hobo, Anal. Bioanal. Chem., 2004, 379, 375.

    Article  CAS  Google Scholar 

  6. S. Neugebauer, S. R. Evans, Z. P. Aguilar, M. Mosbach, I. Fritsch, and W. Scuhmann, Anal. Chem., 2004, 76, 458.

    Article  CAS  Google Scholar 

  7. D. R. Meldrum, H. T. Evansen, W. H. Pence, S. E. Moody, D. L. Cunningham, and P. J. Wiktor, Genome Res., 2000, 10, 95.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. A. V. Lemmo, D. J. Rose, and T. C. Tisone, Anal. Chem., 1997, 69, 543.

    Article  CAS  Google Scholar 

  9. A. V. Lemmo, J. T. Fisher, H. M. Geysen, and T. C. Tisone, Curr. Opn. Biotechnol., 1998, 9, 615.

    Article  CAS  Google Scholar 

  10. P. Calvert, Chem. Lett., 2001, 13, 3299.

    CAS  Google Scholar 

  11. P. Cooley, D. Wallamce, and B. Antohe, J. Assoc. Lab. Auto., 2002, 7, 33.

    Article  Google Scholar 

  12. J. Kimura, Y. Kawana, and T. Kuriyama, Biosensors, 1988, 4, 41.

    Article  Google Scholar 

  13. J. D. Newman, A. P. F. Turner, and G. Marrazza, Anal. Chim. Acta, 1992, 262, 13.

    Article  CAS  Google Scholar 

  14. S. Ekstron, P. Onnerfjord, J. Nilsson, M. Bengtsson, T. Laurell, and G. Marko-Varga, Anal. Chem., 2000, 72, 286.

    Article  Google Scholar 

  15. W. T. Berggren, M. S. Westphall, and L. M. Smith, Anal. Chem., 2002, 74, 3443.

    Article  CAS  Google Scholar 

  16. M. Petersson, J. Nilsson, L. Wallman, T. Laurell, and T. Johansson, J. Chromatogr., B, 1998, 714, 39.

    Article  CAS  Google Scholar 

  17. D. Sziele, O. Bruggermann, M. Doring, R. Freitag, and K. J. Schugerl, J. Chromatogr., A, 1994, 669, 254.

    Article  CAS  Google Scholar 

  18. T. Nishiyama, F. Endo, H. Eguchi, T. Nakagama, N. Seino, M. Shinoda, T. Shimosaka, T. Hobo, and K. Uchiyama, Bunseki Kagaku, 2005, 54, 533.

    Article  CAS  Google Scholar 

  19. H. Eguchi, K. Nakamura, F. Endo, T. Nishiyama, T. Nakagama, N. Seino, M. Shinoda, and K. Uchiyama, Bunseki Kagaku, 2005, 54, 969.

    Article  Google Scholar 

  20. T. Nishiyama, F. Endo, H. Eguchi, J. Tsunokawa, T. Nakagama, N. Seino, M. Shinoda, T. Shimosaka, T. Hobo, and K. Uchiyama, Chem. Lett., 2006, 35, 272.

    Article  CAS  Google Scholar 

  21. T. Laurell, J. Nilsson, and G. Marko-Varga, Anal. Chem., 2005, 77, 265A.

    Article  Google Scholar 

  22. P. Önnerfjord, J. Nilsson, L. Wallman, T. Laurell, and G. Marko-Varga, Anal. Chem., 1998, 70, 4755.

    Article  Google Scholar 

  23. A. Ressine, S. Ekstrom, G. Marko-Varga, and T. Laurell, Anal. Chem., 2005, 75, 6968.

    Article  Google Scholar 

  24. G. U. Lee, Z. Wang, and H. Shang, Langmuir, 2006, 22, 6723.

    Article  Google Scholar 

  25. Y. Kudo, J. Tsunokawa, M. Yagi, H. Nakajima, T. Nakagama, K. Arai, Y. Yoshimura, and K. Uchiyama, Bunseki Kagaku, 2006, 55, 313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Uchiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, Y., Nakahara, T., Nakagama, T. et al. Development of a Surface-Reaction System in a Nanoliter Droplet Made by an Ink-jet Microchip. ANAL. SCI. 23, 91–95 (2007). https://doi.org/10.2116/analsci.23.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.91

Navigation