Skip to main content
Log in

Simultaneous Quartz Crystal Microbalance-Electrochemical Impedance Spectroscopy Study on the Adsorption of Anti-human Immunoglobulin G and Its Immunoreaction at Nanomaterial-modified Au Electrode Surfaces

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The quartz crystal microbalance method (QCM), in combination with electrochemical impedance spectroscopy (EIS), has been utilized to monitor in situ anti-human IgG adsorption on several Au-based surfaces, bare Au, nanogold/4-aminothiophenol (4AT)/Au, and multi-walled carbon nanotubes (MWCNT)/Au, and succeeding human IgG reactions. Also, the immobilization protocol of anti-human IgG via its glutaraldehyde (GA) cross-linking with self-assembled 4AT on an Au electrode and the subsequent surface immunoreaction were examined. The resonant frequency (f0) and the motional resistance (R1) of the piezoelectric quartz crystal (PQC) as well as electrochemical impedance parameters were measured and discussed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the ferricyanide/ferrocyanide couple were examined before and after electrode modification, the antibody adsorption and antibody-antigen reactions. We found that the amount for antibody adsorption was the greatest on the colloid Au modified surface, and that at MWCNT ranked the second, while specific bioactivity was almost identical on the four kinds of surfaces. Two parameters simultaneously obtained at the colloid Au modified surface, Δf0 and ΔCs (interfacial capacitance), have been used to estimate the association constant of the immunoreaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wagner and G. G. Guilbaut, “Food Biosensor Analysis”, 1991, Dekker, New York.

    Google Scholar 

  2. J. M. V. Emon and V. Lopez-Avila, Anal. Chem., 1992, 64, 79A.

    Article  Google Scholar 

  3. M. Santandreu, F. Cespedes, and S. Alegret, Anal. Chem., 1997, 69, 2080.

    Article  CAS  Google Scholar 

  4. D. Athey, M. Ball, C. J. McNeil, and R. D. Armstrong, Electroanalysis, 1997, 7, 270.

    Article  Google Scholar 

  5. F. J. Hayes, H. B. Halsall, and W. R. Heineman, Anal. Chem., 1994, 66, 1860.

    Article  CAS  Google Scholar 

  6. N. Kaneki, X. Yan, A. Kumari, H. B. Halsall, and W. R. Heineman, Anal. Chim. Acta, 1994, 287, 253.

    Article  CAS  Google Scholar 

  7. S. Babacan, P. Pivarnik, S. Letcher, and A. G. Rand, Biosens. Bioelectron., 2000, 15, 615.

    Article  CAS  Google Scholar 

  8. B. G. Healey and D. R. Walt, Anal. Chem., 1995, 67, 4471.

    Article  CAS  Google Scholar 

  9. Y. Y. Wong, S. P. Ng, M. H. Ng, S. H. Si, S. Z. Yao, and Y. S. Fung, Biosens. Bioelectron., 2002, 17, 676.

    Article  CAS  Google Scholar 

  10. S. T. Pathirana, J. Barbaree, B. A. Chin, M. G. Hartell, W. C. Neely, and V. Vodyanoy, Biosens. Bioelectron., 2000, 15, 135.

    Article  CAS  Google Scholar 

  11. J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, and S. J. Dong, Anal. Chem., 2002, 74, 2217.

    Article  CAS  Google Scholar 

  12. E. T. Thostenson, Z. F. Ren, and T. W. Chou, Compos. Sci. Technol., 2001, 61, 1899.

    Article  CAS  Google Scholar 

  13. N. N. Zhu, Z. Chang, P. G. He, and Y. Z. Fang, Anal. Chim. Acta, 2005, 545, 21.

    Article  CAS  Google Scholar 

  14. L. P. Lu, S. Q. Wang, and X. Q. Lin, Anal. Chim. Acta, 2004, 519, 161.

    Article  CAS  Google Scholar 

  15. K. Wang, J. J. Xu, and H. Y. Chen, Sens. Actuators, B, 2006, 114, 1052.

    Article  CAS  Google Scholar 

  16. V. Carralero, M. L. Mena, and J. M. Pingarrón, Biosens. Bioelectron., in Press.

  17. G. Sauerbrey, Z. Phys., 1959, 155, 206.

    Article  CAS  Google Scholar 

  18. K. K. Kanazawa and J. G. Gordon II, Anal. Chim. Acta, 1985, 175, 99.

    Article  CAS  Google Scholar 

  19. S. J. Martin, V. E. Granstaff, and G. C. Frye, Anal. Chem., 1991, 63, 2272.

    Article  CAS  Google Scholar 

  20. M. Muratsugu, F. Ohta, Y. Miya, T. Hosokawa, S. Kurosawa, N. Kamo, and H. Ikeda, Anal. Chem., 1993, 65, 2933.

    Article  CAS  Google Scholar 

  21. H. Zhang, R. Wang, H. Tan, L. Nie, and S. Yao, Talanta, 1998, 46, 171.

    Article  CAS  Google Scholar 

  22. K. Chen, D. Liu, L. Nie, and S. Yao, Talanta, 1994, 41, 2195.

    Article  CAS  Google Scholar 

  23. A. A. Suleiman and G. G. Guibault, Analyst, 1994, 119, 2279.

    Article  CAS  Google Scholar 

  24. Q. Xie, C. Xiang, Y. Yuan, Y. Zhang, L. Nie, and S. Yao, J. Colloid Interface Sci., 2003, 262, 107.

    Article  CAS  Google Scholar 

  25. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 1980, Wiley, New York.

    Google Scholar 

  26. J. D. Andrade, “Surface and Interfacial Aspects of Biomedical Polymers”, 1986, Vols. 1 - 2, Plenum, New York.

    Google Scholar 

  27. Q. Xie, C. Xiang, Y. Zhang, Y. Yuan, M. Liu, L. Nie, and S. Yao, Anal. Chim. Acta, 2002, 464, 65.

    Article  CAS  Google Scholar 

  28. L. Tan, Q. Xie, and S. Yao, Bioelectrochemistry, in Press.

  29. Y. Liu, Y. Li, S. Liu, J. Li, and S. Yao, Biomaterials, 2004, 25, 5725.

    Article  CAS  Google Scholar 

  30. D. Tang, Da. Zhang, D. Tang, and H. Ai, J. Immunol. Methods, 2006, 316, 144.

    Article  CAS  Google Scholar 

  31. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem., 1995, 67, 735.

    Article  CAS  Google Scholar 

  32. A. Doron, E. Katz, and I. Willner, Langmuir, 1995, 11, 1313.

    Article  CAS  Google Scholar 

  33. A. Zhou, Q. Xie, Y. Yuan, Y. Zhang, and S. Yao, Anal. Chim. Acta, 2000, 419, 251.

    Article  CAS  Google Scholar 

  34. D. A. Buttry, “Electroanalytical Chemistry”, ed. A. J. Bard, 1991, Vol. 17, Marcel Dekker, New York.

  35. P. Bernabeu, L. Tamisier, and A. D. Cesare, Electrochim. Acta, 1988, 33, 1129.

    Article  CAS  Google Scholar 

  36. J. C. Hoogvliet, M. Dijksma, B. Kamp, and W. P. van Bennekom, Anal. Chem., 2000, 72, 2016.

    Article  CAS  Google Scholar 

  37. A. G. Amit, R. A. Mariuzza, S. E. Phillips, and R. J. Poljak, Science, 1986, 233, 747.

    Article  CAS  Google Scholar 

  38. T. B. Dubrovsky, M. V. Demcheva, P. Savitsky, E. Y. Mantrova, V. V. Savransky, and L. V. Belovolova, Biosens. Biolectron., 1993, 8, 377.

    Article  CAS  Google Scholar 

  39. M. Z. Atassi, C. J. V. Oss, and D. R. Absolom, translated by C. Zheng and A. Wu, “Molecular Immunology”, 1988, Science Press, Beijing.

    Google Scholar 

  40. H. Ebato, C. A. Gentry, J. N. Herron, W. Mueller, Y. Okahata, H. Ringsdorf, and P. A. Suci, Anal. Chem., 1994, 66, 1683.

    Article  CAS  Google Scholar 

  41. X. Chu, Z. Lin, G. Shen, and R. Yu, Chem. J. Chin. Univ., 1996, 17, 1025.

    CAS  Google Scholar 

  42. I. Kumagai and K. Tsumoto, “Antigen-Antibody Binding. Encyclopedia of life Sciences”, 2001, Nature Publishing Group.

    Google Scholar 

  43. H. He, Q. Xie, Y. Zhang, and S. Yao, J. Biochem. Biophys. Methods, 2005, 62, 191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingji Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, X., Xie, Q., Zhang, Y. et al. Simultaneous Quartz Crystal Microbalance-Electrochemical Impedance Spectroscopy Study on the Adsorption of Anti-human Immunoglobulin G and Its Immunoreaction at Nanomaterial-modified Au Electrode Surfaces. ANAL. SCI. 23, 689–696 (2007). https://doi.org/10.2116/analsci.23.689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.689

Navigation