Skip to main content
Log in

Continuous Flow Analysis Combined with a Light-Absorption Ratio Variation Approach for Determination of Copper at ng/ml Level in Natural Water

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The complexation between Cu(II) and naphthochrome green (NG) is very sensitive at pH 4.09 with the formation of complex ion [Cu(NG)2(H2O)2]2-. It can thus used for the determination of Cu(II) by the light-absorption ratio variation approach (LARVA) with a good selectivity. Both the ordinary detection procedure and continuous flow analysis (CFA) were carried out, where the latter is fit for continuous and rapid analysis of samples. The limit of detection (LOD) of Cu(II) is only 1 ng/ml, which is favorable for direct monitoring of natural water. About 30 samples could be analyzed per hour by CFA. Cu(II) contents in Yangtze River, West Lake, Taihu Lake of China and seawater near Shanghai were determined with satisfactory results. The CFA-LARVA spectrophotometry was the first to be coupled and it will play an important role in the in-situ analysis of natural water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nath, Int. J. Biochem. Cell. Biol., 1997, 29, 1245.

    Article  CAS  Google Scholar 

  2. H. Tapiero, D. M. Townsend, and K. D. Tew, Biomed. Pharmacother., 2003, 57, 386.

    Article  CAS  Google Scholar 

  3. E. Kendüzler and A. R. Türker, Anal. Chim. Acta, 2003, 480, 259.

    Article  Google Scholar 

  4. S. L. C. Ferreira, J. R. Ferreira, A. F. Dantas, V. A. Lemos, N. M. L. Araújo, and A. C. S. Costa, Talanta, 2000, 50, 1253.

    Article  CAS  Google Scholar 

  5. A. I. Asan, I. M. Andac, and F. Yilmaz, Talanta, 2003, 60, 861.

    Article  CAS  Google Scholar 

  6. S. Klemenc, B. Budic, and J. Zupan, Anal. Chim. Acta, 1999, 389, 141.

    Article  CAS  Google Scholar 

  7. R. C. Campos, H. R. Santos, and P. Grinberg, Spectrochim. Acta, Part B, 2002, 57, 15.

    Article  Google Scholar 

  8. C. M. P. V. Lopes, A. A. Almeida, J. L. M. Santos, and J. L. F. C. Lima, Anal. Chim. Acta, 2006, 555, 370.

    Article  CAS  Google Scholar 

  9. J. Wu and E. A. Boyle, Anal. Chem., 1997, 69, 2464.

    Article  CAS  Google Scholar 

  10. D. Kara and M. Alkan, Microchem. J., 2002, 71, 29.

    Article  CAS  Google Scholar 

  11. K. Cundeva, T. Stafilov, and G. Pavlovska, Microchem. J., 2000, 65, 165.

    Article  CAS  Google Scholar 

  12. K. Ohta, H. Tanahasi, T. Suzuki, and S. Kaneco, Talanta, 2001, 53, 715.

    Article  CAS  Google Scholar 

  13. A. Babaei, E. Shams, and A. Samadzadeh, Anal. Sci., 2006, 22, 955.

    Article  CAS  Google Scholar 

  14. J. J. Pinto, C. Moreno, and M. A. Garcia-Vargas, Anal. Bioanal. Chem., 2002, 373, 844.

    Article  CAS  Google Scholar 

  15. N. Teshima, S. Gotoh, K. Ida, and T. Sakai, Anal. Chim. Acta, 2006, 557, 387.

    Article  CAS  Google Scholar 

  16. A. K. Manfred, Anal. Chim. Acta, 1998, 364, 125.

    Article  Google Scholar 

  17. M. H. Sorouraddin, J. L. Manzoori, and M. Iranifam, Talanta, 2005, 66, 1117.

    Article  CAS  Google Scholar 

  18. G. Máximo, O. Fernando, R. B. Maria, B. Marcela, and L. B. Jose, Talanta, 2005, 68, 365.

    Article  Google Scholar 

  19. D. Vendramini, V. Grassi, and E. A. G. Zagatto, Anal. Chim. Acta, 2006, 570, 124.

    Article  CAS  Google Scholar 

  20. P. Herzsprung, A. Duffek, K. Friese, M. Rechter, M. Schultze, and W. Tümpling, Water Res., 2005, 39, 1887.

    Article  CAS  Google Scholar 

  21. M. H. Stoll, K. Bakker, G. H. Nobbe, and R. R. Haese, Anal. Chem., 2001, 73, 4111.

    Article  CAS  Google Scholar 

  22. T. Tomiyasu, S. Aikou, K. Anazawa, and H. Sakamoto, Anal. Sci., 2005, 21, 917.

    Article  CAS  Google Scholar 

  23. S. Ohno, M. Tanaka, N. Teshima, and T. Sakai, Anal. Sci., 2004, 20, 171.

    Article  CAS  Google Scholar 

  24. L. K. Shpigun, Y. V. Shushenachev, and P. M. Kamilova, Anal. Chim. Acta, 2006, 573/574, 360.

    Article  Google Scholar 

  25. H. W. Gao, S. Q. Xia, H. Y. Wang, and J. F. Zhao, Water Res., 2004, 38, 1642.

    Article  CAS  Google Scholar 

  26. H. W. Gao, Y. Qian, X. T. Kong, and S. Q. Xia, Instrument. Sci. Technol., 2004, 32, 195.

    Article  CAS  Google Scholar 

  27. L. Lu, S. Zhu, X. Liu, Z. Xie, and X. Yan, Anal. Chim. Acta, 2005, 535, 2183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, HW., Wang, CL., Jia, JY. et al. Continuous Flow Analysis Combined with a Light-Absorption Ratio Variation Approach for Determination of Copper at ng/ml Level in Natural Water. ANAL. SCI. 23, 655–659 (2007). https://doi.org/10.2116/analsci.23.655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.655

Navigation