Skip to main content
Log in

Potential-Modulation Spectroscopy at Solid/Liquid and Liquid/Liquid Interfaces

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Potential-modulation spectroelectrochemical methods at solid/liquid and liquid/liquid interfaces are reviewed. After a brief summary of the basic features and advantages of the methods, practical applications of potential-modulation spectroscopy are demonstrated using our recent studies of solid/liquid and liquid/liquid interfaces, including reflection measurements for a redox protein on a modified gold electrode and fluorescence measurements for various dyes at a polarized water/1,2-dichloroethane interface. For both interfaces, the use of linearly polarized incident light enabled an estimation of the molecular orientation. The use of a potential-modulated transmission-absorption measurement for an optically transparent electrode with immobilized metal nanoparticles is also described. The ability of potential-modulated fluorescence spectroscopy to clearly elucidate the charge transfer and adsorption mechanisms at liquid/liquid interfaces is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5 References

  1. Spectroelectrochemistry: Theory and Practice”, ed. R. J. Gale, 1988, Plenum Press, New York.

  2. Y. Y. Tong, E. Oldfield, and A. Wieckowski in “Encyclopedia of Electrochemistry”, ed. A. J. Bard, M. Stratmann, and E. J. Calvo, 2003, Vol. 2, Wiley-VCH, Weinheim, 147.

  3. I. Burgess, V. Zamlynny, G. Szymanski, A. L. Schwan, R. J. Faragher, J. Lipkowski, J. Majewski, and S. Satija, J. Electroanal. Chem., 2003, 550, 187.

    Article  Google Scholar 

  4. M. Shikata, Rev. Polarogr., 1954, 4, 15.

    Google Scholar 

  5. A. Prostak and W. N. Hansen, Phys. Rev., 1967, 160, 600.

    Article  CAS  Google Scholar 

  6. J. D. E. McIntyre in “Optical Techniques in Electrochemistry”, ed. R. H. Müller, 1973, Vol. 9, Chap. 2, John Wiley and Sons, New York.

  7. A. Bewick, K. Kunimatsu, B. S. Pons, and J. W. Russell, J. Electroanal. Chem., 1984, 160, 47.

    Article  CAS  Google Scholar 

  8. S. H. Kim and D. A. Scherson, Anal. Chem., 1992, 64, 3091.

    Article  CAS  Google Scholar 

  9. S. Nakabayashi and A. Kira, J. Phys. Chem., 1991, 95, 9961.

    Article  CAS  Google Scholar 

  10. T. Sagara in “Advances in Electrochemical Science and Engineering”, ed. C. Alkire, D. M. Kolb, J. Lipkowski, and P. N. Ross, 2006, Vol. X, Wiley-VCH, Weinheim, 47.

  11. T. Sagara, M. Fukuda, and N. Nakashima, J. Phys. Chem. B, 1998, 102, 521.

    Article  CAS  Google Scholar 

  12. T. Sagara, Y. Kubo, and K. Hiraishi, J. Phys. Chem. B, 2006, 110, 16550.

    Article  CAS  Google Scholar 

  13. T. Sagara, H. Murase, M. Komatsu, and N. Nakashima, Appl. Spectrosc., 2000, 54, 316.

    Article  CAS  Google Scholar 

  14. P. L. Edmiston, J. E. Lee, S. S. Cheng, and S. S. Saavedra, J. Am. Chem. Soc., 1997, 119, 560.

    Article  CAS  Google Scholar 

  15. J. Zhou, J. Zheng, and S. Y. Jiang, J. Phys. Chem. B, 2004, 108, 17418.

    Article  CAS  Google Scholar 

  16. K. Ataka and J. Heberle, J. Am. Chem. Soc., 2004, 126, 9445.

    Article  CAS  Google Scholar 

  17. T. Sagara, N. Kaba, M. Komatsu, M. Uchida, and N. Nakashima, Electrochim. Acta, 1998, 43, 2183.

    Article  CAS  Google Scholar 

  18. S. Imabayashi, T. Mita, and T. Kakiuchi, Langmuir, 2005, 21, 2474.

    Article  CAS  Google Scholar 

  19. T. Sagara, N. Kato, A. Toyota, and N. Nakashima, Langmuir, 2002, 18, 6995.

    Article  CAS  Google Scholar 

  20. A. Toyota, N. Nakashima, and T. Sagara, J. Electroanal. Chem., 2004, 565, 335.

    Article  CAS  Google Scholar 

  21. T. Kakiuchi and Y. Takasu, Anal. Chem., 1994, 66, 1853.

    Article  CAS  Google Scholar 

  22. T. Kakiuchi and Y. Takasu, J. Electroanal. Chem., 1995, 381, 5.

    Article  Google Scholar 

  23. T. Kakiuchi and Y. Takasu, J. Phys. Chem. B, 1997, 101, 5963.

    Article  CAS  Google Scholar 

  24. Z. F. Ding, R. G. Wellington, P. F. Brevet, and H. H. Girault, J. Electroanal. Chem., 1997, 420, 35.

    Article  CAS  Google Scholar 

  25. D. J. Fermín, Z. Ding, P. F. Brevet, and H. H. Girault, J. Electroanal. Chem., 1998, 447, 125.

    Article  Google Scholar 

  26. Z. F. Ding, D. J. Fermín, P. F. Brevet, and H. H. Girault, J. Electroanal. Chem., 1998, 458, 139.

    Article  CAS  Google Scholar 

  27. H. Nagatani, R. A. Iglesias, D. J. Fermín, P. F. Brevet, and H. H. Girault, J. Phys. Chem. B, 2000, 104, 6869.

    Article  CAS  Google Scholar 

  28. H. Nagatani, D. J. Fermín, and H. H. Girault, J. Phys. Chem. B, 2001, 105, 9463.

    Article  CAS  Google Scholar 

  29. H. Nagatani, T. Ozeki, and T. Osakai, J. Electroanal. Chem., 2006, 588, 99.

    Article  CAS  Google Scholar 

  30. N. Nishi, K. Izawa, M. Yamamoto, and T. Kakiuchi, J. Phys. Chem. B, 2001, 105, 8162.

    Article  CAS  Google Scholar 

  31. H. Nagatani, S. Suzuki, D. J. Fermín, H. H. Girault, and K. Nakatani, Anal. Bioanal. Chem., 2006, 386, 633.

    Article  CAS  Google Scholar 

  32. T. Osakai, H. Yamada, H. Nagatani, and T. Sagara, J. Phys. Chem. C, 2007, 111, 9480.

    Article  CAS  Google Scholar 

  33. K. Nakatani, H. Nagatani, D. J. Fermín, and H. H. Girault, J. Electroanal. Chem., 2002, 518, 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Sagara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagatani, H., Sagara, T. Potential-Modulation Spectroscopy at Solid/Liquid and Liquid/Liquid Interfaces. ANAL. SCI. 23, 1041–1048 (2007). https://doi.org/10.2116/analsci.23.1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.1041

Navigation