Skip to main content
Log in

Three Empirical Correlations Connecting Gaseous Cluster Energies and Solvation Energies of Alkali Metal and Halide Ions

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper gives two empirical correlations of formation Gibbs energies of gaseous clusters ΔGfn as function of number of solvent molecules attached to the ion, n, and one correlation connecting the ΔGfn for each individual cluster with the total ΔGohydr value. The experimental ratios of ΔGf2Gf1 and ΔGf3Gf1 for both alkali metal and halide ions are on average equal to 0.75 and 0.5, respectively. ΔGfn values for n ≥ 4 are correlated with n as ΔGfn = [a/(n - 1)] ΔGf1 + b ΔGf1. For all available data on cluster energies and each individual cluster, the ΔGfn’s are straight-line functions of ΔGohydr. This well corresponds to another empirical rule stating that the Gibbs energies of transfer of ions between two solvents are often as well straight-line functions of ΔGohydr [J. Rais and T. Okada, J. Phys. Chem. A, 2000, 104, 7314]. Tentative models of the found behavior are proposed. A full data set of the gaseous cluster energies of formation based on inclusion of new, usually not used entries from the literature is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Marcus, Electrochim. Acta, 1998, 44, 91.

    Article  CAS  Google Scholar 

  2. T. Osakai and K. Ebina, J. Phys. Chem. B, 1998, 102, 5691.

    Article  CAS  Google Scholar 

  3. L. I. Krishtalik, N. M. Alpatova, and E. V. Ovsyannikova, Russ. J. Electrochem. (Eng. Trans.), 1995, 31, 802.

    CAS  Google Scholar 

  4. W. R. Fawcett, Mol. Phys., 1998, 95, 507.

    Article  CAS  Google Scholar 

  5. G. Gritzner, Electrochim. Acta, 1998, 44, 73.

    Article  CAS  Google Scholar 

  6. M. H. Abraham and Y. H. Zhao, J. Org. Chem., 2004, 69, 4677.

    Article  CAS  Google Scholar 

  7. S. C. Lahiri, Z. Phys. Chem., 2003, 217, 13.

    Article  CAS  Google Scholar 

  8. J. Rais and T. Okada, J. Phys. Chem. A, 2000, 104, 7314.

    Article  CAS  Google Scholar 

  9. L. Dxidic and P. Kebarle, J. Phys. Chem., 1970, 74, 1466.

    Article  Google Scholar 

  10. R. G. Keesee and A. W. Castleman, Jr., J. Phys. Chem. Ref. Data, 1986, 15, 1011.

    Article  CAS  Google Scholar 

  11. J. D. Payzant, A. J. Cunningham, and P. Kebarle, Can. J. Chem., 1973, 51, 3242.

    Article  CAS  Google Scholar 

  12. W. R. Davidson and P. Kebarle, J. Am. Chem. Soc., 1976, 98, 6125.

    Article  CAS  Google Scholar 

  13. A. W. Castleman, Jr., P. M. Holland, D. M. Lindsay, and K. I. Peterson, J. Am. Chem. Soc., 1978, 100, 6039.

    Article  CAS  Google Scholar 

  14. A. W. Castleman, Jr., Chem. Phys. Lett., 1978, 53, 560.

    Article  CAS  Google Scholar 

  15. S. K. Searles and P. Kebarle, J. Phys. Chem., 1968, 72, 742.

    Article  CAS  Google Scholar 

  16. I. N. Tang and A. W. Castleman, Jr., J. Chem. Phys., 1975, 62, 4576.

    Article  CAS  Google Scholar 

  17. M. R. Arshadi and J. H. Futrell, J. Phys. Chem., 1974, 78, 1482.

    Article  CAS  Google Scholar 

  18. J. Sunner and P. Kebarle, J. Am. Chem. Soc., 1984, 106, 6135.

    Article  CAS  Google Scholar 

  19. M. Arshadi, R. Yamdagni, and P. Kebarle, J. Phys. Chem., 1970, 74, 1475.

    Article  CAS  Google Scholar 

  20. K. Hiraoka, S. Mizuse, and S. Yamabe, J. Phys. Chem., 1988, 92, 3943.

    Article  CAS  Google Scholar 

  21. K. Hiraoka, Bull. Chem. Soc. Jpn., 1987, 60, 2555.

    Article  CAS  Google Scholar 

  22. K. Hiraoka and S. Yamabe, Int. J. Mass Spectrom. Ion Processes, 1991, 109, 133.

    Article  CAS  Google Scholar 

  23. T. M. Magnera, G. Caldwell, J. Sunner, S. Ikuta, and P. Kebarle, J. Am. Chem. Soc., 1984, 106, 6140.

    Article  CAS  Google Scholar 

  24. K. Hiraoka and S. Mizuse, Chem. Phys., 1987, 118, 437.

    Article  Google Scholar 

  25. R. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 1972, 94, 2940.

    Article  CAS  Google Scholar 

  26. I. A. Topol, G. J. Tawa, S. K. Burt, and A. A. Rashin, J. Chem. Phys., 1999, 111, 10998.

    Article  CAS  Google Scholar 

  27. H. M. Lee, P. Tarakeshwar, J. Park, M. R. Kolaski, Y. J. Yoon, H.-B. Yi, W. Y. Kim, and K. S. Kim, J. Phys. Chem. A, 2004, 108, 2949.

    Article  CAS  Google Scholar 

  28. J. Rais and T. Okada, to be published.

  29. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, J. Phys. Chem. A, 1998, 102, 7787.

    Article  CAS  Google Scholar 

  30. Y. Marcus, “Ion Solvation”, 1985, John Wiley, New York.

    Google Scholar 

  31. Handbook of Chemistry and Physics”, ed. D. R. Lide, 84th ed., 2003, CRC Press, New York.

  32. S. B. Rempe, D. Asthagiri, and L. R. Pratt, Phys. Chem. Chem. Phys., 2004, 6, 1966.

    Article  CAS  Google Scholar 

  33. G. H. Peslherbe, B. M. Ladanyi, and J. T. Hynes, J. Phys. Chem. A, 1999, 103, 2561.

    Article  CAS  Google Scholar 

  34. J. V. Coe, Int. Rev. Phys. Chem., 2001, 20, 33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rais, J., Okada, T. Three Empirical Correlations Connecting Gaseous Cluster Energies and Solvation Energies of Alkali Metal and Halide Ions. ANAL. SCI. 22, 533–538 (2006). https://doi.org/10.2116/analsci.22.533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.533

Navigation