Skip to main content
Log in

Liquid Filling Method for Nanofluidic Channels Utilizing the High Solubility of CO2

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We developed a fabrication method and a liquid filling method for a nano chemical reactor that used Y-shaped nanochannels specially designed for mixing and reacting. In order to reduce the pressure loss and to utilize the characteristics of the nanochannel, inlet microchannels were fabricated just beside the nanochannels. We investigated an initial liquid filling method into the nanochannels that ensured there were no air bubbles that could cause a flow stack due to the capillary pressure. In our method, the micro- and nanochannels were filled with carbon dioxide and any remaining air during the initial liquid introduction was dissolved utilizing the high solubility of carbon dioxide. We propose that chemical reactions in nanospaces can be realized by utilizing these fabrication and liquid introduction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Laurell, J. Nilsson, K. Jensen, D. J. Harrison, and J. P. Kutter (ed.), “Micro Total Analysis Systems 2004”, 2004, Royal Society of Chemistry, Malmö, Sweden.

    Google Scholar 

  2. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, Anal. Chem., 2002, 74, 2623.

    Article  CAS  Google Scholar 

  3. P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem., 2002, 74, 2637.

    Article  CAS  Google Scholar 

  4. J. Wang, G. Chen, M. P. Chatrathi, and M. Musameh, Anal. Chem., 2004, 76, 298.

    Article  CAS  Google Scholar 

  5. N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, and Y. Baba, Anal. Chem., 2004, 76, 15.

    Article  CAS  Google Scholar 

  6. S. Song, A. K. Singh, and B. J. Kirby, Anal. Chem., 2004, 76, 4589.

    Article  CAS  Google Scholar 

  7. M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, Anal. Chem., 2004, 76, 1618.

    Article  CAS  Google Scholar 

  8. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett., 2004, 84, 5299.

    Article  CAS  Google Scholar 

  9. A. Hibara, T. Saito, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem., 2002, 74, 6170.

    Article  CAS  Google Scholar 

  10. L. J. Guo, X. Cheng, and C. F. Chou, Nano. Lett., 2004, 4(1), 69.

    Article  CAS  Google Scholar 

  11. J. Han and H. G. Craighead, Science, 2000, 288, 1026.

    Article  CAS  Google Scholar 

  12. N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, Appl. Phys. Lett., 2004, 85, 3274.

    Article  CAS  Google Scholar 

  13. Q. Pu, J. Yun, H. Temkin, and S. Liu, Nano. Lett., 2004, 4, 1099.

    Article  CAS  Google Scholar 

  14. A. Hibara, T. Saito, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem., 2002, 74, 6170.

    Article  CAS  Google Scholar 

  15. M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, and T. Kitamori, Anal. Chem., 2002, 74, 1565.

    Article  CAS  Google Scholar 

  16. K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem., 2000, 72, 1144.

    Article  CAS  Google Scholar 

  17. H. Hisamoto, T. Horiuchi, K. Uchiyama, M. Tokeshi, A. Hibara, and T. Kitamori, Anal. Chem., 2001, 73, 5551.

    Article  CAS  Google Scholar 

  18. H. Hisamoto, T. Saito, M. Tokeshi, A. Hibara, and T. Kitamori, Chem. Commun., 2001, 24, 2662.

    Article  Google Scholar 

  19. J. Monahan, A. A. Gewirth, and R. G. Nuzzo, Anal. Chem., 2001, 73, 3193.

    Article  CAS  Google Scholar 

  20. M. Tokeshi, T. Minagawa, and T. Kitamori, Anal. Chem., 2000, 72, 1711.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, E., Hibara, A., Kim, HB. et al. Liquid Filling Method for Nanofluidic Channels Utilizing the High Solubility of CO2. ANAL. SCI. 22, 529–532 (2006). https://doi.org/10.2116/analsci.22.529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.529

Navigation