Skip to main content
Log in

Diffusivities of Tris(2,2′-bipyridyl)ruthenium inside Silica- Nanochannels Modified with Alkylsilanes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The apparent diffusion coefficients of tris(2,2′-bipyridyl)ruthenium ([Ru(bpy3)]2+) are estimated in silica-nanochannels which are assembled inside columnar alumina pores in an anodic alumina membrane, and are modified with alkylsilanes such as trimethylchlorosilane (C1), butyldimethylchlorosilane (C4), and dodecyldimethylchlorosilane (C12). The estimation is performed by observing the lag-time, which is defined as the time required for [Ru(bpy)3]2+ to diffuse through alkylsilane-modified silica-nanochannels in the alumina membrane. When ethanol is used as a solvent, the apparent diffusion coefficients of [Ru(bpy)3]2+ are estimated as 2.1 x 10-10 and 3.2 x 10-10 cm2 s-1 in the C1- and C4- modified silica-nanochannels, respectively. These values are about 104 times smaller than that obtained in bulk ethanol. Based on the experimental results on the solvent dependency of the lag-time, the hydrogen-bonding interaction between ethanol molecules is considered to be stronger in the C1- and C4-modified silica-nanochannels than in bulk ethanol, and the hydrogen-bonding interaction plays a critical role for the slow diffusivity in those nanochannels. In contrast, the apparent diffusion coefficient in the C12-modified silica-nanochannel is at least two orders of magnitude larger than those in the C1- and C4-modified silica-nanochannels. This relatively fast diffusion is most likely explained by the presence of a long alkyl chain of C12, which reduces a hindrance effect that is originates in the hydrogen-bonding interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Lee and C. R. Martin, Chem. Mater., 2001, 13, 3236.

    Article  CAS  Google Scholar 

  2. S. B. Lee and C. R. Martin, J. Am. Chem. Soc., 2002, 124, 11850.

    Article  CAS  PubMed  Google Scholar 

  3. S. A. Miller, V. Y. Young, and C. R. Martin, J. Am. Chem. Soc., 2001, 123, 12335.

    Article  CAS  PubMed  Google Scholar 

  4. N. Li, S. Yu, C. C. Harrell, and C. R. Martin, Anal. Chem., 2004, 76, 2025.

    Article  CAS  PubMed  Google Scholar 

  5. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, Science, 2004, 303, 62.

    Article  CAS  PubMed  Google Scholar 

  6. M. Majumder, N. Chopra, and B. J. Hinds, J. Am. Chem. Soc., 2005, 127, 9062.

    Article  CAS  PubMed  Google Scholar 

  7. S. Huang and Y. Yin, Anal. Sci., 2006, 22, 1005.

    Article  CAS  PubMed  Google Scholar 

  8. T. Kyotani, L.-F. Tsai, and A. Tomita, Chem. Mater., 1996, 8, 2109.

    Article  CAS  Google Scholar 

  9. K. Matsui, B. K. Pradhan, T. Kyotani, and A. Tomita, J. Phys. Chem. B, 2001, 105, 5682.

    Article  CAS  Google Scholar 

  10. H. Masuda and K. Fukuda, Science, 1995, 268, 1466.

    Article  CAS  PubMed  Google Scholar 

  11. H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, and G. A. Ozin, Nature, 1996, 379, 703.

    Article  CAS  Google Scholar 

  12. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature, 1997, 389, 364.

    Article  CAS  Google Scholar 

  13. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater., 1999, 11, 579.

    Article  CAS  Google Scholar 

  14. B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G. A. Ozin, Acc. Chem. Res., 2005, 38, 305.

    Article  CAS  PubMed  Google Scholar 

  15. Z. Yang, Z. Niu, X. Cao, Z. Yang, Y. Lu, Z. Hu, and C. C. Han, Angew. Chem., Int. Ed., 2003, 42, 4201.

    Article  CAS  Google Scholar 

  16. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, Nat. Mater., 2004, 3, 337.

    Article  CAS  PubMed  Google Scholar 

  17. Q. Lu, F. Gao, S. Komarneni, and T. E. Mallouk, J. Am. Chem. Soc., 2004, 126, 8650.

    Article  CAS  PubMed  Google Scholar 

  18. T. Yamada, H.-S. Zhou, H. Uchida, M. Tomita, Y. Ueno, T. Ichino, I. Honma, K. Asai, and T. Katsube, Adv. Mater., 2002, 14, 812.

    Article  CAS  Google Scholar 

  19. G. Wirnsberger, B. J. Scott, and G. D. Stucky, Chem. Commun., 2001, 119.

    Google Scholar 

  20. N. Liu, D. R. Dunphy, P. Atanassov, S. D. Bunge, Z. Chen, G. P. Lopex, T. J. Boyle, and C. J. Brinker, Nano. Lett., 2004, 4, 551.

    Article  CAS  Google Scholar 

  21. Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, J. Shelnutt, and C. J. Brinker, Nature, 2001, 410, 913.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G. D. Stucky, Nano Lett., 2004, 4, 2337.

    Article  CAS  Google Scholar 

  23. W.-S. Chae, S.-W. Lee, S.-J. Im, S.-W. Moon, W.-C. Zin, J.-K. Lee, and Y.-R. Kim, Chem. Commun., 2004, 2554.

    Google Scholar 

  24. D. J. Odom, L. A. Baker, and C. R. Martin, J. Phys. Chem. B, 2005, 109, 20887.

    Article  CAS  PubMed  Google Scholar 

  25. E. A. Bluhm, E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young, and G. D. Jarvinen, Langmuir, 1999, 15, 8668.

    Article  CAS  Google Scholar 

  26. Y. Fu, F. Ye, W. G. Sanders, M. M. Collinson, and D. A. Higgins, J. Phys. Chem. B, 2006, 110, 9164.

    Article  CAS  PubMed  Google Scholar 

  27. R. M. Barrer and D. M. Grove, Trans. Faraday Soc., 1951, 47, 837.

    Article  CAS  Google Scholar 

  28. E. G. Reichwein-Buitenhuis, H. C. Visser, F. de Jong, and D. N. Reinhoudt, J. Am. Chem. Soc., 1995, 117, 3913.

    Article  CAS  Google Scholar 

  29. G. Liu, Y. Li, and J. Jonas, J. Chem. Phys., 1991, 95, 6892.

    Article  CAS  Google Scholar 

  30. J.-P. Korb, A. Delville, S. Xu, G. Demeulenaere, P. Costa, and J. Jonas, J. Chem. Phys., 1994, 101, 7074.

    Article  Google Scholar 

  31. L. Ballard and J. Jonas, Langmuir, 1996, 12, 2798.

    Article  CAS  Google Scholar 

  32. B. Grunberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, and G. Buntkowsky, Chem. Eur. J., 2004, 10, 5689.

    Article  PubMed  CAS  Google Scholar 

  33. W. Masierak, T. Emmler, E. Gedat, A. Schreiber, G. H. Findenegg, and G. Buntkowsky, J. Phys. Chem. B, 2004, 108, 18890.

    Article  CAS  Google Scholar 

  34. K. Morishige and K. Kawano, J. Chem. Phys., 2000, 112, 11023.

    Article  CAS  Google Scholar 

  35. P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, and Y. Kuroda, J. Phys. Chem. B, 2000, 104, 5498.

    Article  CAS  Google Scholar 

  36. T. Takamuku, H. Maruyama, S. Kittaka, S. Takahara, and T. Yamaguchi, J. Phys. Chem. B, 2005, 109, 892.

    Article  CAS  PubMed  Google Scholar 

  37. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. B, 1999, 103, 5814.

    Article  CAS  Google Scholar 

  38. B. Webber and J. Dore, J. Phys.: Condens. Matter, 2004, 16, S5449.

    CAS  Google Scholar 

  39. R. A. Farrer, B. J. Loughnane, and J. T. Fourkas, J. Phys. Chem. A, 1997, 101, 4005.

    Article  CAS  Google Scholar 

  40. B. J. Loughnane, A. Scodinu, and J. T. Fourkas, J. Phys. Chem. B, 1999, 103, 6061.

    Article  CAS  Google Scholar 

  41. H. Tanaka, T. Iiyama, N. Uekawa, T. Suzuki, A. Matsumoto, M. Grun, K. K. Unger, and K. Kaneko, Chem. Phys. Lett., 1998, 293, 541.

    Article  CAS  Google Scholar 

  42. S. K. Pal, D. Sukul, D. Mandal, S. Sen, and K. Bhattacharyya, J. Phys. Chem. B, 2000, 104, 2613.

    Article  CAS  Google Scholar 

  43. R. Baumann, C. Ferrante, F. W. Deeg, and C. Brauchle, J. Chem. Phys., 2001, 114, 5781.

    Article  CAS  Google Scholar 

  44. R. Baumann, C. Ferrante, E. Kneuper, F. W. Deeg, and C. Brauchle, J. Phys. Chem. A, 2003, 107, 2422.

    Article  CAS  Google Scholar 

  45. A. Yamaguchi, Y. Amino, K. Shima, S. Suzuki, T. Yamashita, and N. Teramae, J. Phys. Chem. B, 2006, 110, 3910.

    Article  CAS  PubMed  Google Scholar 

  46. V. Antochshuk and M. Jaroniec, Chem. Mater., 2000, 12, 2496.

    Article  CAS  Google Scholar 

  47. A. Yamaguchi, J. Watanabe, M. M. Mahmoud, R. Fujiwara, K. Morita, T. Yamashita, Y. Amino, Y. Chen, L. Radhakrishnan, and N. Teramae, Anal. Chim. Acta, 2006, 556, 157.

    Article  CAS  PubMed  Google Scholar 

  48. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.

    Article  CAS  Google Scholar 

  49. Y. Tanamura, T. Uchida, N. Teramae, M. Kikuchi, K. Kusaba, and Y. Onodera, Nano Lett., 2001, 1, 387.

    Article  CAS  Google Scholar 

  50. W. K. Lowen and E. C. Broge, J. Phys. Chem., 1961, 65, 16.

    Article  CAS  Google Scholar 

  51. A. C. Zettlemeyer and H. H. Hsing, J. Colloid Interface Sci., 1977, 58, 263.

    Article  Google Scholar 

  52. G. E. Berendsen and L. D. Galan, J. Liq. Chromatogr., 1978, 1, 403.

    Article  CAS  Google Scholar 

  53. D. W. Sindorf and G. E. Maciel, J. Phys. Chem., 1982, 86, 5208.

    Article  CAS  Google Scholar 

  54. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface Sci., 1997, 187, 275.

    Article  CAS  PubMed  Google Scholar 

  55. J. G. Gaudiello, P. R. Sharp, and A. J. Bard, J. Am. Chem. Soc., 1982, 104, 6373.

    Article  CAS  Google Scholar 

  56. C. R. Martin, I. Rubinstein, and A. J. Bard, J. Electroanal. Chem., 1983, 151, 267.

    Article  CAS  Google Scholar 

  57. A. M. Scott and R. Pyati, J. Phys. Chem. B, 2001, 105, 9011.

    Article  CAS  Google Scholar 

  58. A. Ramirez, B. L. Lopez, and L. Sierra, J. Phys. Chem. B, 2003, 107, 9275.

    Article  CAS  Google Scholar 

  59. Youzai Handbook (in Japanese)”, ed. S. Asahara, N. Tokura, M. Okawara, J. Kumanotani, and M. Senoo, 1976, Kodansha, Tokyo.

    Google Scholar 

  60. K. Nakatani and H. Kakizaki, Anal. Sci., 2003, 19, 1211.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Teramae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, A., Yoda, T., Suzuki, S. et al. Diffusivities of Tris(2,2′-bipyridyl)ruthenium inside Silica- Nanochannels Modified with Alkylsilanes. ANAL. SCI. 22, 1501–1507 (2006). https://doi.org/10.2116/analsci.22.1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.1501

Navigation